1,210 research outputs found
Excitation spectrum of a two-component Bose-Einstein condensate in a ring potential
A mixture of two distinguishable Bose-Einstein condensates confined in a ring
potential has numerous interesting properties under rotational and
solitary-wave excitation. The lowest-energy states for a fixed angular momentum
coincide with a family of solitary-wave solutions. In the limit of weak
interactions, exact diagonalization of the many-body Hamiltonian is possible
and permits evaluation of the complete excitation spectrum of the system.Comment: 4 pages, 1 figur
Experimental methods in chemical engineering: X-ray photoelectron spectroscopy-XPS
X\u2010ray photoelectron spectroscopy (XPS) is a quantitative surface analysis technique used to identify the elemental composition, empiricalformula, chemical state, and electronic state of an element. The kinetic energy of the electrons escaping from the material surface irradiated by anx\u2010ray beam produces a spectrum. XPS identifies chemical species and quantifies their content and the interactions between surface species. It isminimally destructive and is sensitive to a depth between 1\u201310 nm. The elemental sensitivity is in the order of 0.1 atomic %. It requires ultra highvacuum (1
7107 12Pa) in the analysis chamber and measurement time varies from minutes to hours per sample depending on the analyte. XPSdates back 50 years ago. New spectrometers, detectors, and variable size photon beams, reduce analysis time and increase spatial resolution. AnXPS bibliometric map of the 10 000 articles indexed by Web of Science[1]identifies five research clusters: (i) nanoparticles, thin films, and surfaces;(ii) catalysis, oxidation, reduction, stability, and oxides; (iii) nanocomposites, graphene, graphite, and electro\u2010chemistry; (iv) photocatalysis,water, visible light, andTiO2; and (v) adsorption, aqueous solutions, and waste water
High-Resolution Thermal-Wave Imaging Using the Photoinductive Effect
Photoinductive imaging is a newly devised technique for photothermal imaging based on eddy-current detection of thermal waves [1]. Thermal waves produce a localized modulation in the specimen’s electrical conductivity, which can be detected by its effect on the impedance of a nearby eddy-current coil. This photoinductive effect can be used to image surface or near-surface cracks, voids, or inclusions. The method is limited in practice to conducting specimens, but it can be used to inspect thin, nonconducting coatings on metallic substrates, as we demonstrate here. One promising feature of photoinductive imaging is its potential for high resolution, especially when compared with the resolution possible with eddy-current probes alone. The objective of the present study was to exploit the high resolution capability inherent in this technique by adapting a photoinductive sensor developed for a fiber optic probe [2] to an existing photoacoustic microscope. In this paper we explore using this technique for typical applications in nondestructive evaluatio
Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface
Effect of 3d-doping on the electronic structure of BaFe2As2
The electronic structure of BaFe2As2 doped with Co, Ni, and Cu has been
studied by a variety of experimental and theoretical methods, but a clear
picture of the dopant 3d states has not yet emerged. Herein we provide
experimental evidence of the distribution of Co, Ni, and Cu 3d states in the
valence band. We conclude that the Co and Ni 3d states provide additional free
carriers to the Fermi level, while the Cu 3d states are found at the bottom of
the valence band in a localized 3d10 shell. These findings help shed light on
why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.Comment: 18 pages, 8 figure
Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures
We report photoluminescence (PL) studies of the surface exciton peak in ZnO nanostructures at ∼3.367 eV aimed at elucidation of the nature and origin of the emission and its relationship to the nanostructure morphology. PL spectra in conjunction with localized voltage application in high vacuum and different gas atmospheres show a consistent variation (and recovery), allowing an association of the PL to a bound excitonic transition at the ZnO surface, which is modified by an adsorbate. PL studies of samples treated by plasma and of samples exposed to UV light under high vacuum conditions, both well-known processes for desorption of surface adsorbed oxygen,
show no consistent effects on the surface exciton peak indicating the lack of involvement of oxygen species.
X-ray photoelectron spectroscopy data strongly suggest involvement of adsorbed OH species. X-ray diffraction,
scanning, and transmission electronmicroscopy data are presented also, and the relationship of the surface exciton
peak to the nanostructure morphology is discussed
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
The physics of a two-component cold fermi gas is now frequently addressed in
laboratories. Usually this is done for large samples of tens to hundreds of
thousands of particles. However, it is now possible to produce few-body systems
(1-100 particles) in very tight traps where the shell structure of the external
potential becomes important. A system of two-species fermionic cold atoms with
an attractive zero-range interaction is analogous to a simple model of nucleus
in which neutrons and protons interact only through a residual pairing
interaction. In this article, we discuss how the problem of a two-component
atomic fermi gas in a tight external trap can be mapped to the nuclear shell
model so that readily available many-body techniques in nuclear physics, such
as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the
study of these systems. We demonstrate an application of the SMMC method by
estimating the pairing correlations in a small two-component Fermi system with
moderate-to-strong short-range two-body interactions in a three-dimensional
harmonic external trapping potential.Comment: 13 pages, 3 figures. Final versio
Лабораторна установка для дослідження ступеня очищення і пошкодження коренебульбоплодів
Патент України на корисну модель № 79083, МПК B65G 33/00, 2012.Лабораторна установка для дослідження ступеня очищення і пошкодження коренебульбоплодів, що містить раму, на якій з можливістю кутового та вертикального зміщення на підрамах встановлені секція пруткового транспортера-очисника та секція бітерних очисних валів, завантажувальний бункер, причому під секцією пруткового транспортера-очисника та секцією бітерних очисних валів на рамі розташовані поперечні лотки для відбору від сепарованих домішок, яка відрізняється тим, що кутовий зазор між центральною віссю барабана пруткового транспортера-очисника в зоні вивантаження коренебульбоплодів та центральною віссю першого бітерного очисного вала може змінюватись за рахунок використання різних отворів, які виконані на стійці та підрамі, а осьовий зазор – за рахунок кронштейна з отворами, причому над прутковим транспортером-очисником та секцією бітерних очисних валів встановлені вертикальні та похилі еластичні екрани, а для відбору очищених коренебульбоплодів в зоні вивантаження бітерних очисних валів розташована еластична ємність з можливістю вертикального переміщення та фіксації її задньої частини на вертикальному кронштейні
Hysteresis in a quantized, superfluid atomtronic circuit
Atomtronics is an emerging interdisciplinary field that seeks new
functionality by creating devices and circuits where ultra-cold atoms, often
superfluids, play a role analogous to the electrons in electronics. Hysteresis
is widely used in electronic circuits, e.g., it is routinely observed in
superconducting circuits and is essential in rf-superconducting quantum
interference devices [SQUIDs]. Furthermore, hysteresis is as fundamental to
superfluidity (and superconductivity) as quantized persistent currents,
critical velocity, and Josephson effects. Nevertheless, in spite of multiple
theoretical predictions, hysteresis has not been previously observed in any
superfluid, atomic-gas Bose-Einstein condensate (BEC). Here we demonstrate
hysteresis in a quantized atomtronic circuit: a ring of superfluid BEC
obstructed by a rotating weak link. We directly detect hysteresis between
quantized circulation states, in contrast to superfluid liquid helium
experiments that observed hysteresis directly in systems where the quantization
of flow could not be observed and indirectly in systems that showed quantized
flow. Our techniques allow us to tune the size of the hysteresis loop and to
consider the fundamental excitations that accompany hysteresis. The results
suggest that the relevant excitations involved in hysteresis are vortices and
indicate that dissipation plays an important role in the dynamics. Controlled
hysteresis in atomtronic circuits may prove to be a crucial feature for the
development of practical devices, just as it has in electronic circuits like
memory, digital noise filters (e.g., Schmitt triggers), and magnetometers
(e.g., SQUIDs).Comment: 20 pages, 4 figure
- …