165 research outputs found

    Anisotropy of the Taylor Scale and the Correlation Scale in Plasma Sheet and Solar Wind Magnetic Field Fluctuations

    Get PDF
    Magnetic field data from nine spacecraft in the magnetospheric plasma sheet and the solar wind are employed to determine the correlation scale and the magnetic Taylor microscale from simultaneous multiple-point measurements for multiple intervals with a range of mean magnetic field directions. We have determined that in the solar wind the Taylor scale is independent of direction relative to the mean magnetic field, but the correlation scale along the mean magnetic field (2.7 106 ± 0.2 106 km) is longer than along the perpendicular direction (1.5 106 ± 0.1 106 km). Within the plasma sheet we found that the correlation scale varies from 16,400 ± 1000 km along the mean magnetic field direction to 9200 ± 600 km in the perpendicular direction. The Taylor scale is also longer parallel to the magnetic field (2900 ± 100 km) than perpendicular to it (1100 ± 100 km). In the solar wind the ratio of the parallel correlation scale to the perpendicular correlation scale is 2.62 ± 0.79; in the plasma sheet the ratio is 1.78 ± 0.16, which indicates that the turbulence in both regions is anisotropic. The correlation and Taylor scales may be used to estimate effective magnetic Reynolds numbers separately for each angular channel. Reynolds numbers were found to be approximately independent of the angle relative to the mean magnetic field. These results may be useful in magnetohydrodynamic modeling of the solar wind and the magnetosphere and can contribute to our understanding of solar and galactic cosmic ray diffusion in the heliosphere.Fil: Weygand, James M.. University of California; Estados UnidosFil: Matthaeus, W. H.. University of Delaware; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kivelson, M.G.. University of California; Estados UnidosFil: Kistler, L. M.. University of New Hampshire; Estados UnidosFil: Mouikis, C.. University of New Hampshire; Estados Unido

    Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013

    Get PDF
    Abstract We report the wave observations, associated plasma measurements, and linear theory testing of electromagnetic ion cyclotron (EMIC) wave events observed by the Van Allen Probes on 28 April 2013. The wave events are detected in their generation regions as three individual events in two consecutive orbits of Van Allen Probe-A, while the other spacecraft, B, does not detect any significant EMIC wave activity during this period. Three overlapping H+ populations are observed around the plasmapause when the waves are excited. The difference between the observational EMIC wave growth parameter (Eh) and the theoretical EMIC instability parameter (Sh) is significantly raised, on average, to 0.10 ± 0.01, 0.15 ± 0.02, and 0.07 ± 0.02 during the three wave events, respectively. On Van Allen Probe-B, this difference never exceeds 0. Compared to linear theory (Eh\u3eSh), the waves are only excited for elevated thresholds

    Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a cluster - FAST - SuperDARN - sondrestrom conjunction under a southwest

    Get PDF
    Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130◦). Cluster 1 was outbound through the high altitude (∼12RE ) exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0) when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field pertur- bations and tailward flow deflections. Analysis shows these to be Alfven waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfven waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy- latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs) which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs) just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward), implying a coherent eastward (tailward) motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ∼2 deg. The unprecedented accuracy of the conjunction argues strongly for the validity of the interpretation of the various signatures as resulting from transient reconnection. In particular, the cusp ion steps arise on this pass from this origin, in consonance with the original pulsating cusp model. The observations point to the need of extending current ideas on the response of the ionosphere to transient reconnection. Specifically, it argues in favor of re-establishing the high-latitude boundary layer downstream of the cusp as an active site of momentum transfer

    A Case Study on the Origin of Near- Earth Plasma

    Full text link
    This study presents simulations of the coupled space environment during a geomagnetic storm that separates the different sources of near- Earth plasma. These simulations include separate fluids for solar wind and ionospheric protons, ionospheric oxygen, and the plasmasphere. Additionally, they include the effects of both a hot ring current population and a cold plasmaspheric population simultaneously for a geomagnetic storm. The modeled ring current population represents the solution of bounce- averaged kinetic solution; the core plasmaspheric model assumes a fixed temperature of 1- eV and constant pressure along the field line. We find that during the storm, ionospheric protons can be a major contributor to the plasmasheet and ring current and that ionospheric plasma can largely displace solar wind protons in much of the magnetosphere under certain conditions. Indeed, the ionospheric source of plasma cannot be ignored. Significant hemispheric asymmetry is found between the outflow calculated in the summer and winter hemispheres, consistent with past observations. That asymmetric outflow is found to lead to asymmetric filling of the lobes, with the northern (summer) lobe receiving more outflow that has a higher proportion of O+ and the southern (winter) lobe receiving less outflow with a higher proportion of H+. We moreover find that the inclusion of the plasmasphere can have a system- wide impact. Specifically, when the plasmasphere drainage plume reaches the magnetopause, it can reduce the reconnection rate, suppress ionospheric outflow and change its composition, change the composition in the magnetosphere, and reduce the ring current intensity.Key PointsIonospheric H+ is a critically important contributor to the magnetosphere during a stormSeasonal effect on outflow create asymmetric filling of the lobesThe inclusion of an additional plasmaspheric fluid has system- wide effectsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163439/2/jgra56048.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163439/1/jgra56048_am.pd

    Temperature of the Plasmasphere from Van Allen Probes HOPE

    Get PDF
    We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional E→×B→ drifting Maxwellian and that the potential field and motion of the spacecraft may be accounted for in the simplest possible manner, i.e., by a linear shift of coordinates. The first technique involves the application of a constrained theoretical fit to a measured distribution function. The second technique involves the comparison of total and partial-energy number densities. Both techniques are applied to Van Allen Probes Helium, Oxygen, Proton, and Electron (HOPE) observations of the proton component of the plasmasphere during two orbits on 15 January 2013. We find that the temperatures calculated from these two order-of-magnitude-type techniques are in good agreement with typical ranges of the plasmaspheric temperature calculated using retarding potential analyzer-based measurements—generally between 0.2 and 2 eV (2000–20,000 K). We also find that the temperature is correlated with L shell and hot plasma density and is negatively correlated with the cold plasma density. We posit that the latter of these three relationships may be indicative of collisional or wave-driven heating of the plasmasphere in the ring current overlap region. We note that these techniques may be easily applied to similar data sets or used for a variety of purposes

    Kinetic simulations of magnetic reconnection in presence of a background O+ population

    Full text link
    Particle-in-Cell simulations of magnetic reconnection with an H+ current sheet and a mixed background plasma of H+ and O+ ions are completed using physical mass ratios. Four main results are shown. First, the O+ presence slightly decreases the reconnection rate and the magnetic reconnection evolution depends mainly on the lighter H+ ion species in the presented simulations. Second, the Hall magnetic field is characterized by a two-scale structure in presence of O+ ions: it reaches sharp peak values in a small area in proximity of the neutral line, and then decreases slowly over a large region. Third, the two background species initially separate in the outflow region because H+ and O+ ions are accelerated by different mechanisms occurring on different time scales and with different strengths. Fourth, the effect of a guide field on the O+ dynamics is studied: the O+ presence does not change the reconnected flux and all the characteristic features of guide field magnetic reconnection are still present. Moreover, the guide field introduces an O+ circulation pattern between separatrices that enhances high O+ density areas and depletes low O+ density regions in proximity of the reconnection fronts. The importance and the validity of these results are finally discussed

    Ion kinetic properties in Mercury's pre-midnight plasma sheet

    Get PDF
    With data from the Fast Imaging Plasma Spectrometer sensor on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, we demonstrate that the average distributions for both solar wind and planetary ions in Mercury’s pre-midnight plasma sheet are well-described by hot Maxwell-Boltzmann distributions. Temperatures and densities of the H+ ranges ~1–10 cm3 and ~5–30 MK, respectively, maintain thermal pressures of ~1 nPa. The dominant planetary ion, Na+ abundances with respect to H+ and exhibit mass-proportional ion temperatures, indicative of a reconnection-dominated heating in the magnetosphere. Conversely, planetary ion species are accelerated to similar average energies greater by a factor of ~1.5 than that of H+ acceleration in an electric potential, consistent with the presence of a strong centrifugal acceleration process in Mercury’s magnetosphere

    What high altitude observations tell us about the auroral acceleration: A Cluster/DMSP conjunction

    Get PDF
    Magnetic conjugate observations by Cluster and DMSP F14 satellites are used to study the field lines of auroral arc. Cluster is well above the acceleration region and observes upward keV ion beams and bipolar electric structures. The integrated potential at Cluster altitudes shows a dip that is consistent with the keV electron acceleration energy at low altitude. The earthward Poynting flux at Cluster altitudes is comparable to the electron energy flux at low altitudes. Thus, for this event the auroral acceleration can be described as a quasi-stationary potential structure with equipotential lines reaching the Cluster altitudes. The arc forms at the outer edge of the plasma sheet at a density gradient. Multiple Cluster satellite measurements allow us to study the density increase associated with the development of the arc, and to estimate the velocity of the structure. The quasi-potential structure itself may be part of an Alfvén wave
    corecore