28 research outputs found

    Testing the comet nature of main belt comets. The spectra of 133P/Elst-Pizarro and 176P/LINEAR

    Get PDF
    We present the visible spectrum of MBCs 133P/Elst-Pizarro and 176P/LINEAR, as well as three Themis family asteroids: (62) Erato, (379), Huenna and (383) Janina, obtained in 2007 using three telescopes at "El Roque de los Muchachos"' Observatory, in La Palma, Spain, and the 8m Kueyen (UT2) VLT telescope at Cerro Paranal, Chile. The spectra of 133P and 176P resemble best those of B-type asteroid and are very similar to those of Themis family members and are significantly different from the spectrum of comet 162P/Siding-Spring and most of the observed cometary nuclei. CN gas emission is not detected in the spectrum of 133P. We determine an upper limit for the CN production rate Q(CN) = =2.8×1021= 2.8 \times 10^{21} mol/s, three orders of magnitude lower than the Q(CN) of Jupiter family comets observed at similar heliocentric distances. The spectra of 133P/Elst-Pizarro and 176P/LINEAR confirm that they are likely members of the Themis family of asteroids, fragments that probably retained volatiles, and unlikely have a cometary origin in the trans-neptunian belt or the Oort cloud.Comment: Paper sumbmited to A&A. 7 pages and 6 figure

    Division III: Commission 15: Physical Studies of Comets and Minor Planets

    Get PDF
    The business meeting of IAU Commission 15 (C15) took place in Beijing on 29 August 2012, from 14:00 to 18:00, in room 405 of the China National Convention Center. This report of the business meeting of Commission 15 at the 2012 IAU GA is based on the report provided by Alberto Cellino, past president, and on the minutes taken by Daniel Hestroffer, secretary of Commission 15 in the triennium 2009 to 2012, and current secretary. <P /

    The Distribution of Basaltic Asteroids in the Main Belt

    Full text link
    We present the observational results of a survey designed to target and detect asteroids whose colors are similar to those of Vesta family members and thus may be considered as candidates for having a basaltic composition. Fifty basaltic candidates were selected with orbital elements that lie outside of the Vesta dynamical family. Optical and near-infrared spectra were used to assign a taxonomic type to 11 of the 50 candidates. Ten of these were spectroscopically confirmed as V-type asteroids, suggesting that most of the candidates are basaltic and can be used to constrain the distribution of basaltic material in the Main Belt. Using our catalog of V-type candidates and the success rate of the survey, we calculate unbiased size-frequency and semi-major axis distributions of V-type asteroids. These distributions, in addition to an estimate for the total mass of basaltic material, suggest that Vesta was the predominant contributor to the basaltic asteroid inventory of the Main Belt, however scattered planetesimals from the inner Solar System (a < 2.0 AU) and other partially/fully differentiated bodies likely contributed to this inventory. In particular, we infer the presence of basaltic fragments in the vicinity of asteroid 15 Eunomia, which may be derived from a differentiated parent body in the middle Main Belt (2.5 < a < 2.8). We find no asteroidal evidence for a large number of previously undiscovered basaltic asteroids, which agrees with previous theories suggesting that basaltic fragments from the ~100 differentiated parent bodies represented in meteorite collections have been "battered to bits" [Burbine, T.H., Meibom, A., Binzel, R.P., 1996. Mantle material in the Main Belt: Battered to bits? Met. & Planet. Sci. 31, 607].Comment: 67 pages, 11 figures, accepted to Icaru

    221 Eos: A remnant of a partially differentiated parent body?

    No full text
    International audienc

    221 Eos: A remnant of a partially differentiated parent body?

    No full text
    International audienc

    221 Eos: A remnant of a partially differentiated parent body?

    No full text
    International audienc

    O Sistema Solar revisto

    No full text

    Reanalysis of asteroid families structure through visible spectroscopy

    No full text
    International audienceThe taxonomic properties of the main asteroid families are analyzed and discussed in the light of an updated definition of the families using a large proper elements database and the asteroids taxonomy derived from reflectance spectra recently obtained by two large visible spectroscopic surveys: the SMASS II and the S3OS2. Our analysis indicates that most families are quite homogeneous taxonomically and mineralogically---whenever there exists a mineralogical constraint---, being probably originated from homogeneous parent bodies. The exceptions are the Nysa family, that should likely be considered a clan, and the Eos family that encompasses a broad range of taxonomies, whose mineralogical relations cannot be completely ruled out. Only in a few cases the families may be taxonomically distinguished from the background population. That is the case of the Minerva/Gefion, Adeona, Dora, Merxia, Hoffmeister, Koronis, Eos, and Veritas families. Some of the families presented in this work show a larger spectral diversity than previously reported, as it is the case for the Maria and Koronis families. On the other hand, the Veritas family is found to be homogeneous, in sharp contrast with previous works. Mineralogical relations are reported whenever they could be found in the literature and we examine the possible constraints posed by the presence of different taxonomies in certain families

    Mineralogical analysis of the Eos family from near-infrared spectra

    No full text
    International audienceThe aim of this work is to analyze the mineralogy of the Eos family, which exhibits considerable taxonomic diversity. Its biggest fragment, (221) Eos has previously been associated, through direct spectral comparisons, with such diverse mineralogies as CV/CO and achondrite meteorites [Burbine, T.H., Binzel, R.P., Bus, S.J., Clark, B.E., 2001. Meteorit. Planet. Sci. 36, 245-253; Mothé-Diniz, T., Carvano, J.M., 2005. Astron. Astrophys. 174, 54-80]. In order to perform such analysis we obtained spectra of 30 family members in the 0.8-2.5 mum range, and used three different methods of mineralogical inference: direct spectral comparison with meteorites, intimate mixing using Hapke's theory, and fitting absorption features with the MGM. Although the direct comparison failed to yield good matches---the best candidates being R-chondrites---both mixing model and MGM analysis suggest that the bulk of the family is dominated by forsteritic ( Fa) olivine, with a minor component of orthopyroxene. This composition can be compatible with what would be expected from the partial differentiation of a parent-body with an original composition similar to ordinary chondrites, which probably formed and differentiated closer to the Sun than the present location of the family. A CK-like composition is also possible, from the inferred mineralogy, as well as from the similarities of the spectra in the NIR
    corecore