5,420 research outputs found

    Astrophysical Configurations with Background Cosmology: Probing Dark Energy at Astrophysical Scales

    Full text link
    We explore the effects of a positive cosmological constant on astrophysical and cosmological configurations described by a polytropic equation of state. We derive the conditions for equilibrium and stability of such configurations and consider some astrophysical examples where our analysis may be relevant. We show that in the presence of the cosmological constant the isothermal sphere is not a viable astrophysical model since the density in this model does not go asymptotically to zero. The cosmological constant implies that, for polytropic index smaller than five, the central density has to exceed a certain minimal value in terms of the vacuum density in order to guarantee the existence of a finite size object. We examine such configurations together with effects of Λ\Lambda in other exotic possibilities, such as neutrino and boson stars, and we compare our results to N-body simulations. The astrophysical properties and configurations found in this article are specific features resulting from the existence of a dark energy component. Hence, if found in nature would be an independent probe of a cosmological constant, complementary to other observations.Comment: 23 pages, 11 figures, 2 tables. Reference added. Mon. Not. Roy. Astro. Soc in prin

    Big-bang nucleosynthesis and gamma-ray constraints on cosmic strings with a large Higgs condensate

    Get PDF
    We consider constraints on cosmic strings from their emission of Higgs particles, in the case that the strings have a Higgs condensate with amplitude of order the string mass scale, assuming that a fraction of the energy of the condensate can be turned into radiation near cusps. The injection of energy by the decaying Higgs particles affects the light element abundances predicted by standard big-bang nucleosynthesis (BBN) and also contributes to the diffuse gamma-ray background (DGRB) in the Universe today. We examine the two main string scenarios (Nambu-Goto and field theory) and find that the primordial helium and deuterium abundances strongly constrain the string tension and the efficiency of the emission process in the NG scenario, while the strongest BBN constraint in the FT scenario comes from the deuterium abundance. The Fermi-LAT measurement of the DGRB constrains the field theory scenario even more strongly than previously estimated from EGRET data, requiring that the product of the string tension μ and Newton’s constant G is bounded by Gμ≲2.7×10−11β−2ft, where β2ft is the fraction of the strings’ energy going into Higgs particles

    ISIS: a new N-body cosmological code with scalar fields based on RAMSES. Code presentation and application to the shapes of clusters

    Get PDF
    Several extensions of the standard cosmological model include scalar fields as new degrees of freedom in the underlying gravitational theory. A particular class of these scalar field theories include screening mechanisms intended to hide the scalar field below observational limits in the solar system, but not on galactic scales, where data still gives freedom to find possible signatures of their presence. In order to make predictions to compare with observations coming from galactic and clusters scales (i.e. in the non-linear regime of cosmological evolution), cosmological N-body simulations are needed, for which codes that can solve for the scalar field must be developed. We present a new implementation of scalar-tensor theories of gravity which include screening mechanisms. The code is based in the already existing code RAMSES, to which we have added a non-linear multigrid solver that can treat a large class of scalar tensor theories of modified gravity. We present details of the implementation and the tests that we made to it. As application of the new code, we have studied the influence that two particular modified gravity theories, the symmetron and f(R)f(R) gravity, have on the shape of cluster sized dark matter halos and found consistent results with previous estimations made with a static analysis.Comment: 13 pages, 6 figures, matches version accepted for publication in A&

    Domain wall description of superconductivity

    Get PDF
    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.Comment: 9 pages, 5 figures, Latex. Version to appear in PL

    Degeneracies between Modified Gravity and Baryonic Physics

    Full text link
    In order to determine the observable signatures of modified gravity theories, it is important to consider the effect of baryonic physics. We use a modified version of the ISIS code to run cosmological hydrodynamic simulations to study degeneracies between modified gravity and radiative hydrodynamical processes. Of these, one was the standard Λ\LambdaCDM model and four were variations of the Symmetron model. For each model we ran three variations of baryonic processes: non-radiative hydrodynamics; cooling and star formation; and cooling, star formation, and supernova feedback. We construct stacked gas density, temperature, and dark matter density profiles of the halos in the simulations, and study the differences between them. We find that both radiative variations of the models show degeneracies between their processes and at least two of the three parameters defining the Symmetron model.Comment: 9 pages, 4 figures, matches version accepted to A&

    Spatial variations of the fine-structure constant in symmetron models

    Full text link
    We investigate the variation of the fine-structure constant, {\alpha}, in symmetron models using N-body simulations in which the full spatial distribution of {\alpha} at different redshifts has been calculated. In particular, we obtain simulated sky maps for this variation, and determine its power spectrum. We find that in high-density regions of space (such as deep inside dark matter halos) the value of {\alpha} approaches the value measured on Earth. In the low-density outskirts of halos the scalar field value can approach the symmetry breaking value and leads to significantly different values of {\alpha}. If the scalar-photon coupling strength {\beta}{\gamma} is of order unity we find that the variation of {\alpha} inside dark matter halos can be of the same magnitude as the recent claims by Webb et al. of a dipole variation. Importantly, our results also show that with low-redshift symmetry breaking these models exhibit some dependence of {\alpha} on lookback time (as opposed to a pure spatial dipole) which could in principle be detected by sufficiently accurate spectroscopic measurements, such as those of ALMA and the ELT-HIRES.Comment: 11 pages, 9 figure

    Hydrodynamic Effects in the Symmetron and f(R)f(R)-gravity Models

    Full text link
    In this paper we present the first results from implementing two scalar-tensor modified gravity theories, the symmetron and the Hu-Sawicki f(R)f(R)-gravity model, into a hydrodynamic N-body code with dark matter particles and a baryonic ideal gas. The study is a continuation of previous work where the symmetron and f(R)f(R) have been successfully implemented in the RAMSES code, but for dark matter only. By running simulations, we show that the deviation from Λ\LambdaCDM in these models for the gas density profiles are significantly lower than the dark matter equivalents. When it comes to the matter power-spectrum we find that hydrodynamic simulations agree very well with dark matter only simulations as long as we consider scales larger than k∼0.5k\sim 0.5 h/Mpc. In general the effects of modified gravity on the baryonic gas is found to not always mirror the effects it has on the dark matter. The largest signature is found when considering temperature profiles. We find that the gas temperatures in the modified gravity model studied here show deviations, when compared to Λ\LambdaCDM, that can be a factor of a few larger than the deviations found in density profiles and power spectra.Comment: 11 pages, 10 figures, submitted to MNRA

    Some don't like it hot: microhabitat-dependent thermal and water stresses in a trailing edge population

    Get PDF
    The distributional limits of species in response to environmental change are usually studied at large temporal and/or geographical scales. However, organismal scale habitat variation can be overlooked when investigating large-scale averages of key factors such as temperature. We examine how microhabitat thermal conditions relate to physiological limits, which may contribute to recent range shifts in an intertidal alga. We defined the onset and maximum temperatures of the heat-shock response (HSR) for a southern edge population of Fucus vesiculosus, which has subsequently become extinct. The physiological threshold for resilience (assayed using chlorophyll fluorescence) coincided with declining HSR, determined from the temperature-dependent induction of seven heat-shock protein transcripts. In intertidal habitats, temperature affects physiology directly by controlling body temperature and indirectly through evaporative water loss. We investigated the relationship between the thermal environment and in situ molecular HSR at microhabitat scales. Over cm to m scales, four distinct microhabitats were defined in algal patches (canopy surface, patch edge, subcanopy, submerged channels), revealing distinct thermal and water stress environments during low-tide emersion. The in situ HSR agreed with estimated tissue temperatures in all but one microhabitat. Remarkably, in the most thermally extreme microhabitat (canopy surface), the HSR was essentially absent in desiccated tissue, providing a potential escape from the cellular metabolic costs of thermal stress. Meteorological records, microenvironmental thermal profiles and HSR data indicate that the maximum HSR is approached or exceeded in hydrated tissue during daytime low tides for much of the year. Furthermore, present-day summer seawater temperatures are sufficient to induce HSR during high-tide immersion, preventing recovery and resulting in continuous HSR during daytime low-tide cycles over the entire summer. HSR in the field matched microhabitat temperatures more closely than local seawater or atmospheric data, suggesting that the impacts of climatic change are best understood at the microhabitat scale, particularly in intertidal areas.FCT - Portuguese Science Foundation [POCTI/MAR/61105/2004, EXCL/AAG-GLO/0661/2012, SFRH/BPD/63/03/2009, SFRH/BD/74436/2010]info:eu-repo/semantics/publishedVersio
    • …
    corecore