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ABSTRACT

Several extensions of the standard cosmological model include scalar fields as new degrees of freedom in the underlying gravitational
theory. A particular class of these scalar field theories include screening mechanisms intended to hide the scalar field below obser-
vational limits in the solar system, but not on galactic scales, where data still gives the freedom to find possible signatures of their
presence. To make predictions to compare with observations coming from galactic and clusters scales (i.e. in the non-linear regime
of cosmological evolution), cosmological N-body simulations are needed, for which codes that can solve for the scalar field must
be developed. We present a new implementation of scalar-tensor theories of gravity that include screening mechanisms. The code is
based on the already existing code RAMSES, to which we have added a non-linear multigrid solver that can treat a large class of scalar
tensor theories of modified gravity. We present details of the implementation and the tests that we made to the code. As application
of the new code, we studied the influence that two particular modified gravity theories, the symmetron and f (R) gravity, have on the
shape of cluster sized dark matter haloes and found consistent results with previous estimations made with a static analysis.

Key words. gravitation – galaxies: clusters: general – dark energy – large-scale structure of Universe – galaxies: halos –
methods: numerical

1. Introduction

While the standard model for cosmology, ΛCDM, is widely
accepted as a possibly valid explanation for reality, there are
several issues that are not fully understood on galactic scales,
which give theoreticians the chance to consider extensions to the
model. Furthermore, the tension found by the Planck collabora-
tion (Planck Collaboration XX 2014) between σ8 and Ωm, like-
wise puts the model in check on cosmological scales. The same
collaboration also confirmed the already known anisotropy of
the cosmic microwave background (Eriksen et al. 2004; Hansen
et al. 2009; Planck Collaboration XVI 2014), which is difficult
to explain within the standard model. Between the possible ex-
tensions to the model, there is the idea of modifying the grav-
itational theory. Several alternative theories exist (Clifton et al.
2012; Amendola et al. 2013), all of which include extra degrees
of freedom in the form of scalar, vectors, and even tensor fields.
To test these models in the non-linear regime of structure for-
mation by using large surveys, such as the upcoming Euclid
(Laureijs et al. 2011) and LSST (LSST Science Collaboration
et al. 2009) surveys, precise and accurate predictions are needed,
for which numerical simulations must be performed. Within
the standard context, there are several algorithms and very well
tested codes that are known to give consistent results. For mod-
els beyondΛCDM, however, the situation is still not settled, and
only a few codes exist per alternative gravitational model (e.g.
Llinares et al. 2008; Oyaizu 2008; Schmidt 2009; Baldi et al.
2010; Llinares 2011; Zhao et al. 2011; Li et al. 2011a,b, 2012,
2013; Baldi 2012a,b; Brax et al. 2012, 2013; Puchwein et al.
2013).

N-body techniques are crucial in the build up of predic-
tions, and thus, they should be developed independently by more
than one research group. In an effort to extend the existing li-
brary of codes and give strength to the results by showing that
they are stable when changing underlying approximations and
implementation details, we present here a new implementation
of scalar-tensor modified gravity theories in the code RAMSES
(Teyssier 2002).

The set of models we have focussed on are scalar-tensor
models that were originally designed as explanation for dark en-
ergy and that include screening mechanisms, which are induced
by non-linearities in the equation of motion for the scalar field.
The dominant dynamical effects appear in this models through
the inclusion of a fifth force in addition to the gravitational force.
We are interested in the effects of this fifth-force in the evolution
of large scale structure and the formation of dark matter haloes
in particular. The code that we present here must be taken not
as definitive, but as a starting point for more complex simula-
tions including hydrodynamics and different types of couplings,
including even non-universal couplings to the different matter
species found in our Universe.

For a large class of scalar-tensor theories, one finds the fol-
lowing equation of motion for the metric perturbation Φ, the
scalar field φ, and the positions x of the N-body particles:

∇2Φ =
3
2

ΩmH2
0

a
δ, (1)

∇2φ = S (φ, ρ, a), (2)

ẍ + 2H ẋ +
1
a2
∇Φ + g(φ,∇φ, a) = 0, (3)
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where S and g are model specific functions. These equations are
the outcome of canonical scalar tensor theories, and they can
also be applied to the study of f (R) theories, which can be re-
cast as a scalar-tensor theory. The hard part of trying to solve
Eqs. (1) to (3) consists of changing the original linear multigrid
solver of RAMSES to a non-linear one. In our implementation, the
functions S and g are not hard-coded, but left as free functions,
which increases the flexibility regarding the models that can be
simulated.

Equations (1) to (3) are the consequence of assuming the
quasi-static approximation (i.e. time derivatives in the fields
were neglected). Llinares & Mota (2013a) presented a non-static
solver, which raises the question about the validity of this ap-
proximation. However, one has to take into account that non-
static simulations are very costly since they track very rapid os-
cillations of the scalar field in time, which implies the use of
very short time steps. Furthermore, the frequency of the oscilla-
tions grows when going to small scales, which will imply even
higher requirements when increasing resolution. While Llinares
& Mota (2013a) proved that some of the properties of static and
non-static solutions can disagree, the static simulations are still
needed to calibrate non-static methods and to work out observ-
ables that are not affected by the oscillations. In other words,
while the static approximation could give biased predictions
for a number of (still undetermined) observables, it gives much
higher flexibility regarding resolution and will continue to be
used in the future.

The paper is organised as follows. Section 2 presents the gen-
eral set of equations we intend to solve, while Sect. 3 describes
the discretisation in detail that we use as well as our implemen-
tation of the non-linear multigrid algorithm in the code RAMSES.
In Sect. 4 we give the model-specific equations for two differ-
ent modified gravity theories. Tests that we have made of the
code are presented in Sects. 5, and 6 shows an application of the
code where we calculate the impact that scalar fields have on the
shape of dark matter haloes. Finally, conclusions and discussion
are given in Sect. 7.

2. The equations for generic scalar fields

We are interested in running simulations with models defined by
the following action:

S =
∫ √−g

[
R − 1

2
∇aφ∇aφ − V(φ)

]
d4x + S M(g̃μν, ψ) (4)

where the Einstein and Jordan frame metrics (gμν and g̃μν) are
related according to

g̃μν = A2(φ)gμν. (5)

The equation of motion for the scalar field that results from this
Lagrangian is

�φ = V,φ − A,φT, (6)

where T is the trace of the Einstein frame energy momentum
tensor. To be able to introduce this equation into the code in the
cosmological context, we need to specify the metric

ds2 = −(1 + 2Φ)dt2 + a2(1 − 2Φ)(dx2 + dy2 + dz2), (7)

which is a flat Friedmann-Lemaître-Robertson-Walker metric
with scalar perturbations. With this metric, the equation of mo-
tion in the quasi-static limit reads as

1
a2
∇2φ = V,φ + A,φρ ≡ S (ρ, φ), (8)

where ρ is the matter density and S the source-term shown in
Eq. (2).

In certain models, it is convenient for numerical reasons to
redefine the scalar field

φ = j(u), (9)

where the function j is chosen such that it fixes the sign of the
scalar field to be unique and at the same time, it reduces extreme
gradients that the scalar field could have. Typical choices for j
are power laws or exponential function. The field equation of the
new field u is

∇ · [b(u)∇u] = S (ρ, u), (10)

where

b =
d j
du
· (11)

Thus, even though we start with a canonical scalar field, the
equation we end up trying to solve will not be canonical in many
cases. Our code must therefore be able to solve non-canonical
equations, and we discuss how this is done in the next section.
Naturally, since the redefinition is usually non-linear, it must be
made after switching to a dimensionless field, which we describe
in Sect. 4 when specifying the models.

The evolution of the matter component is found by discretiz-
ing the density field with particles and finding their free trajec-
tories, which are given by the geodesics equation. By taking the
terms that involve the scalar field in the action into account, one
obtains the following modified geodesics:

ẍ + 2H ẋ +
1
a2
∇Φ + 1

a2
∇ log A(φ) = 0, (12)

where we also neglected non-static terms.

3. Implementation of scalar fields in Ramses

Our code is a modification of the open source N-body code
RAMSES (Teyssier 2002), to which we added a non-linear im-
plicit solver to consider the equation of motion of the scalar field
in its static approximation. Information about the original multi-
grid linear solver that we employed as starting point can be found
in Guillet & Teyssier (2011). The set of variables for which the
code is written in are defined in Martel & Shapiro (1998).

In brief, the RAMSES code is an N-body particle mesh code
that also includes a Godunov solver to treat the evolution of
baryons. The gravitational forces are calculated as spatial deriva-
tives of the gravitational potential that is previously calculated
on a grid. We give here a few words regarding the original linear
Poisson solver and present the modifications that are necessary
for including the non-linear equation for the scalar field in its
canonical and non-canonical forms given by Eqs. (8) and (10)
respectively.

3.1. Poisson’s equation

In the standard gravity case, the code RAMSES solves the follow-
ing equation for the gravitational potential:

∇2Φ =
3
2

ΩmH2
0

a
δ = S (δ), (13)

where δ = δρ/ρ0 is the over-density. The equation is solved by
discretizing the differential operator ∇2 on a cartesian grid and
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applying a Gauss-Seidel iteration scheme to the resulting alge-
braic equation. Multigrid techniques are implemented to accel-
erate the convergence of the method.

The Laplacian is discretized by using a standard second-
order formula

∇2Φ =
(Φi+ 1 + Φi− 1 + Φ j+ 1 + Φ j− 1 + Φk+ 1 + Φk− 1) − 6Φ

h2
,

(14)

where we show only sub-indexes with values different than
(i, j, k), which is the notation that we use throughout the paper.
The standard code solves the previous equation by means of an
explicit iterative method that starts from an initial guess for the
potential. During each iteration step, the potential is changed in
an explicit way according to

Φ =
{
(Φi+ 1 + Φi− 1 + Φ j+ 1 + Φ j− 1 + Φk + 1 + Φk− 1)

−h2S (δ)
}
/6. (15)

To speed up the convergence, the solver includes multigrid re-
laxation. In brief, a two-level algorithm is as follows. Given an
approximation for the solution φk the code solves the equation

∇2δφk = R(εk) (16)

for a coarse grid correction δφ, where R is a restriction operator,
and ε the fine grid residual, which is defined as

εk = ∇2φk − ρ. (17)

Once a fixed number of Gauss-Seidel iterations is made for solv-
ing Eq. (16), a correction is applied to the original (fine grid)
solution in the following way:

φ̄k = φk + P(δφk), (18)

where P is a prolongation operator that moves the information
from the coarse to the fine grid. The standard RAMSES code not
only uses two levels for the iterations, but also several levels
within a V scheme (i.e. iterations are made starting from the
finest grid down to the coarsest one and coming back up mak-
ing corrections in every level). More details on multigrid relax-
ation and its generalisation to non-linear equations can be found,
for instance, in Brandt (1977), Wesseling (1992), or Trottenberg
et al. (2000).

3.2. Extending the original solver to non-linear equations (full
approximation storage)

Our solver for the scalar field is based on the original Poisson’s
solver, however, since the source of the scalar field equation will
for many models have a non-linear dependence on the scalar
field, the previous procedure can no longer be used. Our gen-
eralisation of the multigrid scheme is based on the full approxi-
mation storage (FAS) algorithm (e.g. Brandt 1977). In this case,
the equation solved in the coarse grids is no longer a correction
to the solution, but the solution itself. The original equations for
the scalar field, Eqs. (8) or (10), can be written in the form

L(φ, ρ) = Σ, (19)

where the operator L is given in the canonical case by

L(φ, ρ) = ∇2φ − S (ρ, φ) (20)

and by

L(u, ρ) = ∇ · [b(u)∇u] − S (ρ, u) (21)

in the non-canonical one. The new source Σ is zero in the fine
grid and has the following expression in the coarse grids,

Σ = −R[ε(φ, ρ)] + ε(Rφ,Rρ), (22)

where R is a restriction operator that moves information from
the original fine grid to the coarse one, and the residual ε is de-
fined as

ε(φ, ρ) = L(φ, ρ) − Σ. (23)

The source Σ is only calculated when jumping from a fine to a
coarse grid.

The Gauss-Seidel iterations that are needed to improve the
solution of the discretized equation are performed in an implicit
way

φ̄ = φ − L(φ, ρ) − Σ
∂L(φ, ρ)/∂φ

· (24)

This expression can be derived as one step of a Newton-
Ralphson scheme applied to the solution of the equation

L(φ, ρ) − Σ = 0, (25)

and assuming that

∂Σ

∂φ
= 0, (26)

which was found to be a good approximation.
The non-linear multigrid algorithm can be implemented in

the same way in both the canonical and non-canonical cases.
The only difference between the two equations is the discretiza-
tion formula used, which has to be written explicitly for each
differential operator in the uniform part of the grid and in the
boundaries of the refinements. We present these details in the
following sections.

3.3. Discretization of the canonical equation

The canonical Eq. (8) is discretized using standard second-order
formulas as in the original RAMSES code, but applied to the scalar
field φ instead of the gravitational potential Φ. The derivative
of the discretised differential operator that are needed for the
implicit iterations is given by

dL
dφ
= − 6

h2
− dS

dφ
, (27)

where we have taken into account that the source S in Eq. (8) is
now a function of both the matter density and the scalar field φ.

3.3.1. Discretization near the boundaries of the refinements
(canonical case)

The standard RAMSES code includes adaptive mesh refinements,
which means that the resolution of the grid is not uniform in
space, but is increased in regions of interest. The decision to re-
fine a cell in the fine grid is given by some specific criteria, which
could be, for instance, a density threshold. The nodes that lie on
the border of the refinement patches lack one or more neigh-
bours and thus, the discretization formula must be modified to
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take this into account. We briefly describe the workaround to
this problem that is implemented in the standard code and in our
extension to the non-linear case. We give a simplified discus-
sion of the canonical case, but describe the complete algorithm
in the following section when showing the discretization for the
non-canonical equation.

The reconstruction method included in the standard code is
based on the fact that the standard formula for the Laplacian,
Eq. (14), can be rewritten as

∂2φ

∂x2
=

(
φi+ 1 − φ

h
− φ − φi− 1

h

)
/h, (28)

where we show derivatives in only one dimension. To explain the
procedure, we assume, for instance, that we want to calculate
the Laplacian in a cell (i, j, k), which only lacks the neighbour
(i + 1, j, k) (i.e. the node (i, j, k) is the last one of a refinement
to the right in x direction). The derivative in the x direction is
calculated by using information that must be reconstructed in the
boundary of the refinement, which we call φi+ 1/2. The modified
expression for this derivative is

∂2φ

∂x2
=

(
φi+ 1/2 − φ

h/2
− φ − φi−1

h

)
/h, (29)

where φi+ 1/2 is obtained in the first place by moving the infor-
mation from the next neighbour coarse node to the neighbour
non-existing node φi+ 1. Next, the information is moved from
there to the border of the refinement (giving us φi+ 1/2). When
the addition for the 3D Laplacian is made, we obtain the follow-
ing discretization formula:

∇2φ =
(2φi+ 1/2 + φi−1 + φ j+1 + φ j−1 + φk+1 + φk−1) − 7φ

h2
· (30)

In the general case, the number 7 will be substituted by the
number of boundaries n that the node (i, j, k) contains. See
Gibou et al. (2001) for more details on alternative discretization
formulas.

The equation for the explicit iterations, Eq. (15), is then mod-
ified and written as

φi =
1
7

{
(φi−1 + φ j+1 + φ j−1 + φk+1 + φk−1)

−h2

[
ρ − 2φi+ 1/2

h2

] }
. (31)

The term in square brackets in this expression can be seen as
a modified source and calculated before any iteration is made,
which is the way the algorithm is implemented in the origi-
nal code. However, in the non-linear case, the previous expres-
sion is not valid because the Laplacian and the solution have a
non-linear dependence on φ. In the modified code, the complete
Laplacian is calculated at each iteration step. This can be done
by rearranging terms in the discretized Laplacian in the follow-
ing way:

∇2φ =
2φi+ 1/2

h2
+
φi−1 + φ j+1 + φ j−1 + φk+1 + φk−1 − 7φ

h2
· (32)

The first term can be now calculated only once, before any it-
eration is made. The second term must be calculated at every
Gauss-Seidel iteration step.

3.4. Discretization of the non-canonical equation

The discretized differential operator L that corresponds to the
non-canonical Eq. (10) can be written as

∇ · [b(u)∇u] =

+ bi+ 1/2ui+ 1 + bi− 1/2ui− 1 + b j+ 1/2u j+ 1

− b j− 1/2u j− 1 + bk+ 1/2uk+ 1 + bk−1/2uk− 1

(bi+ 1/2 + bi− 1/2 + b j+ 1/2 + b j− 1/2 + bk+ 1/2 + bk− 1/2)u, (33)

where we used the same notation as in previous paragraphs (i.e.
we show only sub-indexes with values different than (i, j, k)).
By assuming b(u) = 1, we recover the standard formula for the
Laplacian. The values of b at the faces of the nodes are calculated
by linear interpolation

bi± 1/2 =
b(u) + b(ui± 1)

2
(34)

b j± 1/2 =
b(u) + b(u j± 1)

2
(35)

bk± 1/2 =
b(u) + b(uk± 1)

2
· (36)

The derivative of Eq. (33) needed for the implicit scheme is
given by

∂

∂u
{∇ · [b(u)∇u]} = (37)

− (bi+ 1/2 + bi− 1/2)

h2
+

db
du

(ui+ 1 + ui− 1 − 2u)
h2

− (b j+ 1/2 + b j− 1/2)

h2
+

db
du

(u j+ 1 + u j− 1 − 2u)

h2

− (bk+ 1/2 + bk− 1/2)

h2
+

db
du

(uk+ 1 + uk− 1 − 2u)
h2

− ∂S (u, ρ)
∂u

· (38)

3.4.1. Discretization near the boundaries of the refinements
(non-canonical case)

When the multigrid algorithm is applied not only to the domain
grid (which is uniform), but also to the refined regions, we face
the problem that the boundary of a node that belongs to a re-
finement does not always correspond to the boundary of its cor-
responding coarse nodes. The issue was solved in the standard
RAMSES code by introducing a mask function in the grids to indi-
cate which of their nodes belongs to a given refinement or does
not. Inner cells (i.e. cells that are not in the boundary) are ini-
tialised with a mask function with value mi, j,k = 1 and outer
cells with a mask mi, j,k = −1. The boundary is defined at the
position where the interpolated value of the cell-centred mask
crosses zero. In the finest grid, the boundaries are positioned at
the faces of the outer cells. On the corresponding coarser grids,
the mask is calculated by applying the restricting operator to the
mask. The mask values must be understood as follows. Cells
with positive mask value have their centre inside the refinement.
In that case, one can use the inner discretisation formulas de-
scribed above. Cells with negative mask value exists as refined
cells, but have their centre outside the boundary. Finally, cells
where the mask takes the value −1 are completely outside the
refinement (i.e. they do not exist). Figure 1 shows an example of
the distribution of masks in a node that belongs to a 2D stencil
and is close to the boundary of the refinement.
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Fig. 1. A five points stencil (2D) located close to the boundary. The
central cell has two neighbours that are not masked m > 0 and two cells
that are masked m < 0. One of these cells is completely masked m = −1
meaning that it does not exist in the memory, and its field value must
be interpolated from the coarse grid. For the cells that are only partly
masked −1 < m < 0, the field value is determined from Eqs. (40) and
(41). The cells with m > 0 are treated as normal cells even though the
boundary might cross some part of the cell.

To deal with the cases where we have masked cells, the dif-
ferential operator is redefined for cells (i, j, k) close to the bound-
ary whenever one of the six neighbouring cells has negative
mask value. The information in cells with m < 0 is replaced by a
ghost value linearly interpolated between cell i and the boundary
value. This ghost value depends explicitly on cell (i, j, k) and the
boundary condition, and with this we make sure that the bound-
ary remains at the same location to second-order accuracy when
one goes from fine to coarse levels in the multigrid hierarchy.

To explain the procedure, we assume for simplicity that only
the (i + 1, j, k)’th cell is masked (mi+ 1, j,k < 0). By linear inter-
polation, we find that the distance from the cell (i, j, k) to the
place where the mask-value crosses m = 0 (i.e. the position of
the boundary) is at

ω =
mi+ 1, j,k

mi+ 1, j,k − mi, j,k
(39)

times the distance xi+ 1, j,k − xi, j,k. The boundary value u# of the
scalar field can then be found as

u# = (1 − ω)uInt
i+ 1, j,k + ωui, j,k (40)

where uInt
i+ 1, j,k = uPre

i+ 1, j,k if −1 < mi+ 1, j,k ≤ 0 and if m = −1 (if the

cell does not exist) we find uInt
i+ 1, j,k by interpolating it from the

coarse grid. The value uPre
i+ 1, j,k in previous expresion is the value

of the cell (i+1, j, k) before we make the Gauss-Seidel iterations
(at the time when the boundary value u# is defined).

The ghost value for ui+ 1, j,k can then be found from

uG
i+ 1, j,k = u#

(
1 − mi+ 1, j,k

mi, j,k

)
+

mi+ 1, j,k

mi, j,k
ui, j,k. (41)

We can combine Eqs. (40) and (41) to get the following equation
for the value of u in the masked cell

uG
i+ 1, j,k = uInt

i+ 1, j,k +
mi+ 1, j,k

mi, j,k

(
ui, j,k − uPre

i, j,k

)
. (42)

Owing to the non-linearity of the differential operator, it is not
possible to include these modifications in the source term before
making the Gauss-Seidel iterations. We have chosen to solve this
by storing the value of uPre

i, j,k for the boundary cells so that we can
reconstruct the ghost value for ui+ 1, j,k whenever needed during
the Gauss-Seidel iterations.

To complete the discretization in the nodes that are close to
the boundary, we need to define a consistent value for bi+ 1, j,k

and ci+ 1, j,k ≡
(

db
du

)
i+i, j,k

. One way to do this, proposed in Gibou

et al. (2001), is to use

b# = (1 − ω)bInt
i+ 1, j,k + ωbi, j,k, (43)

bG
i+ 1, j,k = bInt

i+ 1, j,k +
mi+ 1, j,k

mi, j,k
(bi, j,k − bPre

i, j,k) (44)

where bInt
i+ 1, j,k = b(uInt

i+ 1, j,k) and similar for ci+ 1, j,k. However, the

non-linearity of b and c implies that bG
i+ 1, j,k � b(uG

i+ 1, j,k). To

obtain a consistent value for bG
i+ 1, j,k we instead use

bG
i+ 1, j,k ≡ b(uG

i+ 1, j,k) (45)

cG
i+ 1, j,k ≡ c(uG

i+ 1, j,k). (46)

When calculating the differential operator for cells close to the
boundary, the only changes from this choice are in the actual
values we use for bi+ 1, j,k = bG

i+ 1, j,k, ci+ 1, j,k = cG
i+ 1, j,k, and

ui+ 1, j,k = uG
i+ 1, j,k, but for the derivative of the operator Eq. (37),

we do pick up some new terms such as bG
i+ 1, j,k depends on ui, j,k

through Eq. (42). The extra terms we need to add to Eq. (37) are

∂Li, j,k

∂bi+ 1, j,k

∂bi+ 1, j,k

∂ui, j,k
+

∂Li, j,k

∂ui+ 1, j,k

∂ui+ 1, j,k

∂ui, j,k
(47)

where

∂Li, j,k

∂bi+ 1, j,k

∂bi+ 1, j,k

∂ui, j,k
= ci+ 1, j,k

(ui+ 1, j,k − ui, j,k)

2h2

mi+ 1, j,k

mi, j,k
(48)

∂Li, j,k

∂bi+ 1, j,k

∂bi+ 1, j,k

∂ui, j,k
=

bi+ 1/2, j,k

h2

mi+ 1, j,k

mi, j,k
· (49)

We emphasise that these terms should only be included when
mi+ 1, j,k < 0, i.e. when the (i + 1)’th cell is masked otherwise as
∂ui+ 1, j,k

∂ui, j,k
≡ 0. The case where several neighbour cells are masked

is covered by summing these expressions over all the masked
cells.

4. The equations and implementation details
for specific models

In this section we describe the definition of the two models
that we have implemented (the symmetron and f (R) gravity),
the dimensionless form of their equations, and details on the
implementation.

4.1. Symmetron model

The symmetron model was originally proposed in Hinterbichler
& Khoury (2010) as a screening mechanism that allows a scalar
field to mediate a long range (∼Mpc) force of gravitational
strength in the cosmos while satisfying solar system tests of
gravity. N-body simulations of this model have already been run,
for instance, in Davis et al. (2012) using a modified version of the
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code MLAPM (Knebe et al. 2001). The effect of non-static terms in
these simulations was studied by Llinares & Mota (2013a). The
potential and conformal factor that defines the model are

V(φ) = −1
2
μ2φ2 +

1
4
λφ4 (50)

A(φ) = 1 +
1
2

(
φ

M

)2

, (51)

where μ and M are mass scales, and λ is a dimensionless
constant.

Taking Eq. (8) into account, we find that the static equation
of motion for the scalar field reads as

∇2φ = a2
[(

ρ

M2
− μ2

)
φ + λφ3

]
. (52)

It is convenient to work with a dimensionless scalar field χ,
which we obtain by normalising φ with its vacuum expectation
value,

φ0 =
μ√
λ
· (53)

We substitute the free parameters of the model (μ, λ, M) by the
range of the field that corresponds to ρ = 0,

λ0 =
1√
2μ
, (54)

a dimensionless coupling constant,

β =
φ0MPl

M2
, (55)

and the expansion factor for which the background density takes
the value for which the symmetry is broken in the cosmological
background

a3
SSB =

ρ0

ρSSB
=

ρ0

μ2 M2
· (56)

By substituting these definitions in the equation of motion we
obtain

∇2χ =
a2

2λ2
0

[(aSSB

a

)3
ηχ − χ + χ3

]
, (57)

where η is the matter density in terms of the mean density at any
given redshift.

The modified geodesics given by Eq. (12) take the following
form for this model:

ẍ + 2H ẋ +
1
a2
∇Φ + 1

a2

φ

M2
∇φ = 0, (58)

which can be written as

ẍ + 2H ẋ +
1
a2
∇Φ + 6ΩmH2

0

a2

(βλ0)2

a3
SSB

χ∇χ = 0, (59)

when introducing the dimensionless scalar field χ and the pa-
rameters (λ0, β, aSSB).

The equation can be simplified further by using the super-
comoving quantities defined by Martel & Shapiro (1998)

dτ =
1
a2

dt (60)

Φ̃ = a2Φ. (61)

A similar change in the scalar field

χ̃ = aχ (62)

will also remove the explicit dependence with a in the term re-
lated to the fifth force. In these variables, the equation becomes

d2x
dτ2
+ ∇Φ̃ + 6ΩmH2

0
(βλ0)2

a3
SSB

χ̃∇χ̃ = 0, (63)

which is the expression we use to evolve the positions of the
particles in the N-body code. This equation is solved by using
the same leap-frog scheme as is included in the standard code.
The evolution scheme for the time step n is given by the follow-
ing equations:

un+1/2 = un −
⎡⎢⎢⎢⎢⎣∇φnΔ + 6ΩmH2

0
(βλ0)2

a3
SSB

χ̃n∇χ̃n

⎤⎥⎥⎥⎥⎦ τ/2 (64)

xn+1 = xn + un+1/2Δτ (65)

un+1 = un+1/2 −
⎡⎢⎢⎢⎢⎣∇φn+1 + 6ΩmH2

0
(βλ0)2

a3
SSB

χ̃n+1∇χ̃n+1

⎤⎥⎥⎥⎥⎦Δτ/2. (66)

In the same way as in the standard code, the second evaluation
of the velocities is made in the next time step to avoid calling
both gravitational solvers twice in each time step. The form of
the evolution equation, Eq. (63), is the same as for standard grav-
ity, namely acceleration equals force given by the gradient of a
potential. The main difference is that the force term is on aver-
age larger than for standard gravity. RAMSES uses adaptive time-
stepping to prevent particles moving to far each time step, so we
expect the leap-frog scheme to work just as well for scalar ten-
sor theories as it does for standard gravity. The time steps will in
general be smaller to account for the stronger force.

4.2. Hu-Sawicki f(R) model

As an example of applying the non-canonical equations, we
have implemented the Hu-Sawicki f (R) gravity model (Hu &
Sawicki 2007). The model is originally defined in the Jordan
frame through a modified Einstein-Hilbert term R → R + f (R)
where R is the Ricci scalar and f is a free function. The action
that defines the model is

S =
∫ √−g

[
R + f (R)

16πG
+Lm

]
d4x, (67)

where Lm is the matter Lagrangian, and f is chosen as

f (R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
, (68)

where m2 ≡ H2
0Ωm and c1, c2 and n are dimensionless model pa-

rameters. These three free parameters can be reduced to only
two (n and fR0) by requiring the model to yield dark energy
(here in the form of an effective cosmological constant). This
requires

c1

c2
=

6ΩΛ
Ωm
· (69)

Instead of using c1 (or c2) as our second free parameter, it is
convenient to use

fR0 = −n
c1

c2
2

(
Ωm

3(Ωm + 4ΩΛ)

)n+ 1

, (70)
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which is related to the range of fifth force in the cosmological
background today via

λ0
φ = 3

√
(n + 1)
Ωm + 4ΩΛ

√ | fR0|
10−6

Mpc/h. (71)

The f (R) models can be transformed into a scalar-tensor the-
ory in the form of the action given by Eq. (4) through a Weyl
transformation

g̃μν = A2(φ)gμν (72)

where (Brax et al. 2008)

fR = e−
2βφ
MPl − 1 	 −2βφ

MPl
(73)

with β = 1√
6
. This equation defines R(φ), which can be used to

get the potential V(φ) that is given by

V(φ) =
M2

Pl( fRR − f )

2(1 + fR)2
· (74)

The resulting equation of motion for the scalar field fR in the
static limit is

∇2 fR = − 1
a
ΩmH2

0 (η − 1) + a2ΩmH2
0

×
⎡⎢⎢⎢⎢⎢⎢⎣
(
1 + 4

ΩΛ

Ωm

) (
fR0

fR

) 1
n+ 1

−
(
a−3 + 4

ΩΛ

Ωm

)⎤⎥⎥⎥⎥⎥⎥⎦ , (75)

where fR0 is the value that corresponds to the minimum for the
background density today and can be written as in Eq. (67).
Since we work in the Einstein frame, the equation for the met-
ric perturbations will be the standard Poisson’s equation. This is
a different implementation1 (though mathematically equivalent)
from what is done in other codes that have implemented this
model (Oyaizu 2008; Li et al. 2012; Puchwein et al. 2013). As
noted in Oyaizu (2008), the scalar field equation of motion can
be written in a more numerically stable form by making a field
redefinition:

fR = −a−2eu. (76)

The equation of motion in its non-canonical form is then

∇ · (b(u)∇u) = ΩmaH2
0(ρ̃ − 1)

−Ωma4H2
0

(
1 + 4

ΩΛ

Ωm

)
(| fR0|a2)

1
n+1 e−

u
n+1

+ ΩmaH2
0

(
1 + 4a3ΩΛ

Ωm

)
(77)

where b(u) = eu. The discretization of this equation was imple-
mented as described in Sect. 3.4. The geodesic equation reads as

d2x
dτ2
+ ∇Φ̃ + 1

2
eu∇u = 0. (78)

The evolution scheme used for the geodesics is equivalent to
the one used for the symmetron model and in the standard code
(Eqs. (64) to (66)).

1 By introducing the (Jordan-frame) potential ΦJ = Φ − fR
2 (Φ̃J =

Φ̃ + 1
2 eu) one can transform the equations to that of Oyaizu (2008) and

Li et al. (2012). Poisson’s equation for ΦJ follows from simply adding
Poisson’s equation for ΦN and the Klein-Gordon equation for − fR/2.

5. Code tests

In this section we show the results of the tests that were per-
formed to our implementation of the scalar field solvers.

5.1. Potential solver

To measure the quality of the new solver, we compared results
with solutions obtained for a sphere of uniform density located
in the centre of the box. Confident solutions to compare with can
be obtained by writing the equation in spherical coordinates and
solving the resulting 1D equation with standard packages such
as Mathematica.

The density corresponds to a sphere of radius R of constant
density embedded in a uniform background:

ρ(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρin = (1 + δ) ρ̄

1+ 4π
3 δ( R

B )3 r < R,

ρout =
ρ̄

1+ 4π
3 δ( R

B )3 r > R,
(79)

where

δ =
ρin − ρout

ρout
(80)

characterises the jump in the density, ρ̄ is the mean density in
the box, R the radius of the sphere, and B the size of the box.
The density is provided to the code through a distribution of par-
ticles. The density estimation (CIC) and refinement criteria are
the same as those used for the cosmological simulations we per-
formed. The value of δ chosen for the test is 5000. The radius and
box size for the symmetron test was taken to be R = 3 Mpc/h
and B = 40 Mpc/h, respectively. For the f (R) test we used
R = 5 Mpc/h and B = 100 Mpc/h. For both tests we used
1283 particles and a domain grid with 128 nodes per dimension.
To test that the treatment of the boundary of the refinement is
correct, we included two levels of refinement.

In the symmetron case, the test was made at redshift z = 0
and z = 1, and the models parameters were defined as λ0 =
1 Mpc/h and aSSB = 0.6. This gives us the possibility to test
our solver in a situation in which the redshift is higher than the
symmetry breaking redshift, but the density outside the sphere
is low enough for the field to have a non-zero expectation value.
The model parameters for the test of the f (R) code are n = 1
and | fR0| = 10−6. Figure 2 shows the result of the tests for the
symmetron (left) and f (R) (right) codes. The continuous line is
the 1D solution, and the points are the solution on the grid that
was obtained using the new solvers. The different colours de-
pict the different refinement levels. The test was performed us-
ing both the serial version and the parallel version running with
eight processes. Both versions gave the same results, showing
that the parallel version of the solver works properly.

5.2. Time evolution

To test the time evolution of the new code, we ran cos-
mological simulations and compared the final matter power
spectrum at redshift z = 0 with results that were obtained
with similar codes or taken from the literature. In the sym-
metron case, we ran simulations with three different codes: our
new code that we wanted to test, a modification of the code
MLAPM (Li & Barrow 2011), and the code ECOSMOG (Li et al.
2012). The initial conditions for the comparison with the code
ECOSMOG were the same as were used in the simulations pre-
sented in Li et al. (2012) and were constructed using a box
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Fig. 2. Left: comparison between analytical and numerical solutions of the symmetron model for two different redshifts. The density distribution
is given by a sphere of constant density. Different colours correspond to different levels of refinement. The thin line is the analytic solution for
redshift z = 0 (upper line) and z = 1 (lower line). Right: same for the f (R) solver. See text for details.
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Fig. 3. Relative difference in the symmetron matter power spectrum with respect to ΛCDM for our code (red) and a similar implementation of the
code ECSOMOG. Right: same comparison with the code MLAPM. See text for details of the models and simulations parameters employed.

of 128 Mpc/h and 2563 particles. The symmetron parameters of
this particular simulation are (aSSB, λ0, β) = (0.5, 1 Mpc/h, 1),
while the background cosmology is given by (Ωm,ΩΛ,H0) =
(0.267, 0.733, 71.9 km s−1 Mpc−1). Both simulations were run
using the same random seed for the realisation of the initial
density field, which implies that the differences that we find be-
tween different runs can only be attributed to differences be-
tween the codes and not to cosmic variance. In an effort to
isolate differences that could exist in the modified gravity part
of the codes from the ΛCDM part, we also ran simulations
using standard gravity with both codes using the same initial

conditions and the same background cosmology. The compar-
ison is then made on the difference between the standard and
modified gravity codes. Details on the particular implementa-
tion of ECOSMOG used for the test can be found in Li et al.
(2012). In brief, the code includes a generalised description for
scalar fields, for which the symmetron model is a limit case.
The left-hand panel of Fig. 3 shows the relative difference be-
tween the power spectrum at redshift z = 0, which was obtained
from the symmetron and ΛCDM simulations with both codes.
The differences between the two codes are below 0.2% for all
k < 10 h/Mpc.
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Li et al. (2012) and Puchwein et al. (2013). Different sets of curves
correspond to different values of fR0.

The initial conditions for the comparison with the MLAPM
code were generated for a box of 64 Mpc/h and with 1283 par-
ticles. As in the previous test, the simulations with ISIS and
MLAPM were run with exactly the same initial conditions and
background cosmology, but in this case we used the symmetron
parameters (aSSB, λ0, β) = (0.33, 1 Mpc/h, 1), which means that
the symmetry is broken at earlier times in the background, and so
the effects of the fifth force are enhanced. As described above,
we also used ΛCDM simulations that were run with the ISIS
and MLAPM codes as reference. The right-hand panel of Fig. 3
shows the outcome of the test. A different treatment of the re-
finement structure and in time stepping increases the differences
between both codes, but the difference is still below 1−2% for
all k < 4 h/Mpc.

To test the time evolution of the f (R) code, we compared
the results of our simulations with others taken from the litera-
ture. The codes used in the works that we take as reference are
ECOSMOG (Li et al. 2012) and Gadget (Puchwein et al. 2013).
Both codes include the same f (R) model that we included in our
code, but their implementation was made in the Jordan frame in-
stead of the Einstein frame that we decided to use. We ran three
simulations using fR0 = 10−6, 10−5, and 10−4, which goes from
an almost Newtonian limit model to a model that includes strong
effects of the fifth force. Figure 4 shows the power spectrum of
the three f (R) simulations with respect to a ΛCDM run that was
made for comparison using the same initial conditions. The three
simulations were run using different initial seeds for the random
number generator used to calculate the initial conditions, and
thus the initial phases are different. Cosmic variance should be
taken into account when comparing the curves that correspond
to each code.2 The simulations of the three codes still agree re-
markably well on scales 0.01 h/Mpc � k � 1 h/Mpc.

2 Since the figure shows the relative difference with respect toΛCDM,
the cosmic variance will not appear on large scales, but rather on inter-
mediate and small scales.

6. Application: shape of clusters as a test
for modified gravity

As an application of our new code, we test the impact that the
scalar field fifth force has on the haloes shape of groups and
clusters of galaxies. Llinares & Mota (2013b, LLM13 from now
on) proposed to study this observable by using static calcula-
tions of the total gravitational potential. The general result is
that the presence of a scalar field increases the ellipticity of the
total gravitational force distribution, hence of the x-ray emitting
gas residing in the clusters. Given the observational constraints
that exist on the ellipticity of the x-ray component of clusters,
LLM13 gave constraints on the model parameters β and λ0 (cou-
pling constant and range) for chameleon (Khoury & Weltman
2004) and symmetron models.

A back-of-the-envelope calculation can help for understand-
ing this result. The calculation consists in applying a perturba-
tion to a spherical object and analysing the shape of the asso-
ciated gravitational potential. One could, for instance, propose
the following perturbed density-potential pair (we focus on the
region close to θ = 0):⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρDM(r, θ) = ρ0(r)

(
1 + ερ cos2 θ

)
φ(r, θ) = φ0(r)

(
1 + εφ cos2 θ

)
where ρ0 and φ0 is the pair associated to the unperturbed spheri-
cal system, and ερ and εφ are small numbers. By substituting this
pair in Poisson’s equation

∇2φ = 4πGρ (81)

and keeping only first-order terms in the perturbations, one
obtains

εφ =
4πGρ0r2 sin θ

4πGρ0r2 sin θ − 2φ0 cos(2θ)
r2 cos(θ)2

ερ, (82)

which in the limit θ→ 0 (i.e. maximizing the perturbation) gives
εφ → 0. In other words, in the Newtonian case, the gravitational
potential is insensitive to perturbations in the shape of the den-
sity up to first order, which is a well known result (see for in-
stance results from simulations in Lau et al. 2011).

By repeating the same analysis for instance with the equation
for the chameleon field (Khoury & Weltman 2004)

∇2φc =
β

Mpl
ρ − M5

φ2
, (83)

we obtain

εφ =
ερ[

1 −
(

3M5

φ2
0
+

2φ0 cos(2θ)
sin θ cos(θ)2r2

)
Mpl

βρ0

] · (84)

If we now take the limit β→ ∞we find εφ → ερ, so in the largely
coupled limit, the modified model is sensitive to changes in the
shape of the density up to first order. An alternative way of look-
ing at the same problem is the following. In the chameleon case,
when β or ρ0 is large enough, the field will be forced to stay close
to the minimum of its effective potential φmin = (βρ/M5 MPl)−1/2,
which is uniquely determined by the local matter density. This
implies that in the limit βρ → ∞, the iso-contours of the scalar
field will be completely aligned with the iso-contours of the mat-
ter density, no matter how this density is distributed.

By performing numerical calculations for a fixed density dis-
tribution, LLM13 proved that this result can be also extended to
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Table 1. Model parameters for the symmetron (top) and f (R) (bottom)
runs.

Model λ0 zSSB β

Symm A 1 1 1
Symm B 1 2 1
Symm C 1 1 2
Symm D 1 3 1
Model n | fR0| λ0

fofr4 1 10−4 23.7
fofr5 1 10−5 7.5
fofr6 1 10−6 2.4

Notes. The range in the f (R) model is derived from the value of fR0

and given only to have a reference point to compare both families of
models. The range is given in Mpc/h in both set of models.

symmetron models. However, their result is incomplete in the
sense that time evolution was not taken into account in the cal-
culations; in other words, the dark matter distribution was fixed
and the back reaction of the difference found in the potential
into the shape of the dark matter halo itself was not taken into
account. We give here the next natural step towards a fully real-
istic analysis, by including the time evolution in the dark matter
component. Since in the present version of the ISIS code, bary-
onic physics is not included, for the moment we can only give
constraints on the shape of the dark matter haloes. We remind
the reader that the shape of the baryonic component is still not
fully understood within the context of standard gravity and that
the so-called over-cooling problem is still not completely settled
(see e.g. Lau et al. 2011). The impact of modified gravity on the
shape of the gas distribution is left for future work.

To properly interpret the results that will be presented below,
it is important to understand the relation between the models
studied in this paper and those presented in LLM13. The sym-
metron model employed is the same in both papers. However,
here we substituted the chameleon studied in LLM13 with the
Hu-Sawicki f (R) model (Hu & Sawicki 2007) described in
Sect. 4.2. Both of the two models have an equation of the fol-
lowing form in a non-cosmological setting:

∇2φ = −M4+n

φ1+n
+

β

Mpl
ρ. (85)

The mapping between the Hu-Sawicki f (R) model we have sim-
ulated and the chameleon model is given by n = −1/2, and
β = 1/

√
6. The constant M can be written in terms of the range

of the field in the cosmological background today via

λ0
φ =

⎛⎜⎜⎜⎜⎝ 2M7

27β3ΩmH6
0 M5

Pl

⎞⎟⎟⎟⎟⎠
1
2

· (86)

6.1. Simulations

The data to be used for the analysis was obtained from a set
of simulations that we ran with both standard gravity and the
two models presented in Sect. 4. Table 1 summarises the model
parameters. The initial conditions were generated assuming that
both scalar field models give fully screened solutions at high red-
shift, and thus the Zeldovich approximation is also valid in the
modified models. In practice, we generated only one set of ini-
tial conditions with the package Cosmics (Bertschinger 1995).
We used a box size of 256 Mpc/h and 5123 particles. The back-
ground cosmology is also the same for all the simulations and

is defined as a flat ΛCDM model given by (Ωm,ΩΛ,H0) =
(0.267, 0.733, 71.9 km s−1 Mpc−1).

6.2. Analysis

The aim of the analysis is to measure the shape of the dark mat-
ter haloes present in the simulations and to make the comparison
between ΛCDM haloes and those that were formed under the
influence of the modified gravity models. The haloes were iden-
tified using the code Rockstar (Behroozi et al. 2013). Since
gravitational lensing observations measure the distribution of
the total mass of the clusters, we did the analysis using all the
mass included inside the virial radius. We used a lower cut off
of 1013 M�, which give haloes with more that ∼103 particles.
The upper cut-off in mass is given naturally by the size of the
box. In other words, we present results that are applicable to
groups and clusters of galaxies. We concentrate all our analysis
at redshift z = 0.

To avoid contaminating the results with unrelaxed clusters,
we defined the virialisation state by taking into account the virial
theorem,

1
2

d2I
dt2
= 2T +W − Es, (87)

where

T =
1
2

∑
p

mpv
2
p (88)

is the total kinetic energy,

W = −1
2

∑
p,q

mpmq

|rp − rq| (89)

is the total potential energy, and Es is a surface pressure term
that takes the effects of the environment into account over the
dynamical state of the haloes (e.g. Shaw et al. 2006). It is cus-
tomary to define the virial ratio

η =
2T − Es

W
+ 1. (90)

Virialized objects are defined as having d2I/dt2 ≈ 0, and thus
η ∼ 0. However, one must consider that the value for η is not ex-
actly zero for virialized objects, but oscillates around that value.
We define the virialized sample as composed of those haloes for
which |η| is below a certain threshold, which we choose as 0.2.
The definition given by Eq. (89) is only a lower bound of the true
potential energy, which is likely to have higher values owing to
the presence of the environment in which each dark matter halo
is immersed. Furthermore, the condition η < 0.2 that we use to
define the virialized sample is consistent with the literature (e.g.
Shaw et al. 2006), but ultimately arbitrary. In this sense, the cri-
teria that we employ to define the relaxed sample must be taken
as a rough diagnostic rather than a definitive choise.

In the modified gravity case, the definition of the potential
energy must be modified to take into account the energy of the
scalar field. In this case, the superposition principle is not valid
anymore, so that the virialisation state cannot be calculated by
using previous expressions. A detailed study of this issue applied
to the same data presented here is shown in a companion paper
(Grönke et al. 2014). In the present work, we use a simplified
analysis that consists in calculating the distribution of the η pa-
rameter by using standard gravity and shifting it in such way that
its maximum is centred on zero. Because the models that we are
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Fig. 5. Contours of the distribution of ratios between semi-axis for the symmetron (left) and f (R) (right) simulations. Both panels also include the
ΛCDM simulation for comparison. The points are the expected values of the distributions. The size of the error bars of these are comparable to
the size of the points and are not included in the plot.

treating include a mass-dependent screening, we calculated these
distributions not for the complete sample, but for subsamples de-
fined by four uniform logarithmic mass bins ranging from 1013

to 1015 M�.
Once we have specified the sample of halos, we then mea-

sure the shape of their density distribution, which can be defined
starting from

Mi j =

∫
ρxi x jd

3x. (91)

The iso-density surfaces can be approximated by ellipsoids de-
scribed by the radial ellipsoidal coordinate

k =

√
x2 +

y2

q2
+

z2

s2
(92)

with axial ratios

q2 =
Mxx

Mzz
and s2 =

Myy

Mzz
, (93)

where Mxx, Myy and Mzz are the eigenvalues of Mi j. The integral
in Eq. (91) is computed by summing over the particles,

Mi, j =
∑

l

ml xix j, (94)

up to the virial radius R200, where ml is the mass of the particle l,
which is the same for all the particles in our simulations. The
shape of the regions in which the integral is calculated for each
halo is a triaxial ellipsoid that was determined iteratively as in
Dubinski & Carlberg (1991).

6.3. Results

Figure 5 shows the distributions of the ratios between semi-axis
q = b/a and s = c/a for the whole sample found in each sim-
ulation, with expectation values of the distributions. The error
of this quantities is comparable to the size of the dots and are
thus not shown. The results from the symmetron simulations are

shown in the left-hand panel and can be compared directly with
those presented in LLM13. In there, the dependency of the shape
of the iso-surfaces of the scalar field was shown as a function
of zSSB, λ0, and β. The general result is that these iso-surfaces
move away from the iso-potentials when decreasing both zSSB
or λ0. The dependence on β is the opposite: the higher the cou-
pling, the more elliptical these iso-surfaces are. The simulations
presented here show the expected dependence with β: the Symm
C simulation have lower ratios than the Symm A and ΛCDM
simulations. However, in the case of zSSB, we find a behaviour
that is opposite to what we expected: the higher zSSB, the lower
the ratios found in the simulation, thus the more elongated the
haloes. The result is a direct consequence of taking the time evo-
lution of the haloes into account. While according to LLM13,
a low value for zSSB increases the ellipticity of the iso-surfaces
of the scalar field, the objects in these models are only influ-
enced during a short time by the fifth force. When considering
the time evolution, one takes not only the intrinsic distribution of
the scalar field into account, but also its history and cumulative
effects, which turn the results upside down.

In the f (R) case (right panel of Fig. 5), there is not a clear
trend of the shapes with respect to the free parameter fR0. The ex-
pectation value of the distributions moves slightly towards more
elliptical objects in the fofr6 runs and towards more spherical
objects in the other two. An analysis of the mass dependence of
this distributions will help for interpreting this results.

The simulations give us the chance to extend the results pre-
sented in LLM13 by taking the mass dependence of the signal
into account. We show this dependency in Fig. 6. We find not
only that the changes in shape are not given equally at all masses,
but also that haloes of different mass are affected in a different
way. In addition to this, we find this dependence is not equal for
all the models, but that each model has a different behaviour. In
the symmetron case, we find, within the region of the parameter
space tested with this simulations, that increasing zSSB while fix-
ing λ0 and β (see simulations Symm A, B, and D) increases the
ellipticity almost evenly in the whole mass range studied. The
change in the shapes when modifying β (see simulations Symm
A and C) occurs only a low masses.
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Fig. 6. Axial ratios b/a (upper group of lines) and c/a (lower group of lines) obtained from the symmetron (left) and f (R) (right) simulations as a
function of halo mass. Both panels also include the results from the ΛCDM simulation for comparison.

The dependence of the shapes on mass found in the f (R)
simulations is shown in the right-hand panel of Fig. 6. The
fofr6 model (for which we found an increase in the ellipticity
in the previous analysis) shows that the increase in the total dis-
tribution is given only by the low mass haloes. The high-mass
haloes are mostly screened, so there is not fifth force capable of
changing the shapes. In the low-mass haloes, even if the force
can be screened in their centre, it is still active in the outer re-
gions, so it is possible to find differences with respect to ΛCDM
(see Grönke et al. 2014, for a study of the force distribution in
the haloes of this simulations). In the fofr5 case, we find that
the near absence of deviations from ΛCDM shown in Fig. 5
is actually produced by a compensation given by a large devia-
tion towards more elliptical haloes at high-mass and a correction
towards more spherical haloes in the low-mass end. While the
deviation in the high-mass end is much larger, there are many
more low-mass haloes, so that the effect of all of them together
is enough to change the expectation of the whole sample towards
more spherical haloes. Finally, the fofr4 case seems to contradict
the results presented in LLM13. The haloes in this model are ac-
tually slightly more spherical than in theΛCDM case in the low-
mass half of the sample. By extrapolating results from LLM13
towards a model with a range λ0 = 23.7 and n = −1/2 (accord-
ing to the notation in LLM13), one could expect that the shapes
should be similar to ΛCDM. To explain why fofr4 haloes are
more spherical, one should enrich the analysis with more infor-
mation than just the distribution of forces in a static case. A pos-
sible mechanism for making the axial ratios even closer to one
than in standard gravity could be based on the fact that haloes are
not formed by spherical collapse, but in a hierarchical way. To
take the formation history of the haloes into account could help
in understanding this result. For instance, it was proven by using
N-body simulations that modified gravity models have the prop-
erty of increasing the collisional velocity of dark matter haloes
(Llinares et al. 2009; Lee & Baldi 2012). The model fofr4 is a
model in which the fifth force acquires extreme values, and thus,
the collisional velocity in mayor mergers should be greater than
in ΛCDM, which should change the way in which haloes move
towards equilibrium, making them more spherical.

7. Conclusions and discussion

Several extensions of the standard cosmological model include
scalar fields as new degrees of freedom in the underlying gravi-
tational theory, which can be, for instance, in the form of scalar,
vector, or tensor fields. In general, these new degrees of free-
dom interact with matter and, in particular, with the standard
model fields. Since deviations from Einstein gravity have neither
been observed nor measured up to now in the solar system, these
interacting scalar field theories must include screening mecha-
nisms intended to hide the scalar field below observational lim-
its within the solar system. Such a requirement can be relaxed
on galactic scales and above, where data still gives the freedom
to find possible signatures of their presence.

To make predictions to compare with observations coming
from galactic and clusters scales (i.e. in the non-linear regime of
cosmological evolution), cosmological N-body simulations are
needed, for which codes must be developed that can solve for the
scalar field. In this work we presented a new implementation in
an N-body code of scalar-tensor theories of gravity that includes
screening mechanisms. The code is based on the existing code
RAMSES, to which we have added a non-linear multigrid solver
that can treat a large class of scalar tensor theories of modified
gravity. We presented details of the implementation and the tests
that we made to it.

As application of the new code, we studied the influence of
two particular modified gravity theories, the symmetron and a
chameleon- f (R) gravity, on the shape of group and cluster-sized
dark matter haloes. Using static calculations, Llinares & Mota
(2013b) show that the shape of the scalar fields follows the den-
sity distribution more closely than the gravitational potential,
which should increase the ellipticity of the clusters, hopefully
beyond observational limits. If this is the case, the ellipticity
of clusters provides a way to constraint the parameter space of
scalar-tensor theories. The time evolution was a missing ingre-
dient in the Llinares & Mota (2013b) calculations. Here we ex-
tended this work, including the time evolution in the dark matter
component, and found that indeed the ellipticity of the clusters
in the scalar-tensor simulations is higher, with exception of the
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most extreme f (R) model studied. The predictions that we ob-
tained for the f (R) model were obtained in a different region of
the parameter space studied in Llinares & Mota (2013b), so it is
not possible to make a direct comparison. The main difference
that we found with respect to the Llinares & Mota (2013b) ex-
pectations is that the f (R) haloes can actually be slightly more
spherical than ΛCDM ones when the fifth force is very long
ranged. Further study of the formation history of the haloes is
needed to fully understand this effect.

In the symmetron case we found results that are consistent
with previous analytic estimations that exist in the literature.
Furthermore, we studied the mass dependence of this effects and
found that different regions of the parameter space of this model
give different dependencies. This could help to distinguish be-
tween models once the influence of gas dynamics has been un-
derstood (not only in this models, but also within standard grav-
ity), and accurate predictions can be made.

It is important to note that our results are based on a differ-
ent quantity than studied in Llinares & Mota (2013b). There, the
shape of the X-ray component was studied by assuming static
dark matter haloes and hydro-static equilibrium, while here we
studied the influence of the cosmological evolution in the shape
of the underlying dark matter haloes. The extension of these pre-
dictions to the shape of the gas component is beyond the scope
of this work but will be performed elsewhere. The impact that
these results have on strong lensing statistics is left for future
work. What we can say at present is that the increase in the ellip-
ticity will increase the probability of finding strong lenses, and
thus, act in the right direction for solving the problem with the
lensing statistics that the ΛCDM paradigm has (see Meneghetti
et al. 2013, for a review of this topic).
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