1,811 research outputs found

    GABA(A) receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein

    Get PDF
    GABA(A) receptors are critical in controlling neuronal activity. Here, we examined the role for phospholipase C-related inactive protein type 1 (PRIP-1), which binds and inactivates protein phosphatase 1alpha (PP1alpha) in facilitating GABA(A) receptor phospho-dependent regulation using PRIP-1(-/-) mice. In wild-type animals, robust phosphorylation and functional modulation of GABA(A) receptors containing beta3 subunits by cAMP-dependent protein kinase was evident, which was diminished in PRIP-1(-/-) mice. PRIP-1(-/-) mice exhibited enhanced PP1alpha activity compared with controls. Furthermore, PRIP-1 was able to interact directly with GABA(A) receptor beta subunits, and moreover, these proteins were found to be PP1alpha substrates. Finally, phosphorylation of PRIP-1 on threonine 94 facilitated the dissociation of PP1alpha-PRIP-1 complexes, providing a local mechanism for the activation of PP1alpha. Together, these results suggest an essential role for PRIP-1 in controlling GABA(A) receptor activity via regulating subunit phosphorylation and thereby the efficacy of neuronal inhibition mediated by these receptors

    Determining the Importance of Macro and Trace Dietary Minerals on Growth and Nutrient Retention in Juvenile Penaeus monodon

    Get PDF
    Twelve minerals were screened to identify key dietary minerals important for Penaeus monodon growth. The minerals selected included boron, calcium plus phosphorus (assessed in tandem at a 1:1 ratio), cobalt, copper, magnesium, manganese, potassium, selenium, sodium, strontium and zinc. Twelve purified casein/gelatin-based diets were formulated and contained minerals at two levels: below expected requirements, as attributed by the basal formulation (-) and above expected requirements by adding inorganic minerals (+). The two levels were allocated to dietary treatments in juvenile prawns in accordance with the PB design. A two-level screening analysis was employed where effect of each mineral at level - or + across twelve diets were compared to identify the minerals of importance for culture performance of juvenile prawns. Calcium plus phosphorus (at a 1:1 ratio), magnesium, boron, manganese, selenium and zinc produced the greatest positive effects on weight gain, feed conversion efficiency, biomass gain and nutrient/energy retention. Particularly, boron and manganese significantly increased retention of key macronutrients and energy including gross energy, crude protein and crude lipid. Our study demonstrates the importance of several macro and trace minerals in prawn diets and the pressing need to refine their requirements for P. monodon

    Effects of phytase inclusions in diets containing ground wheat or 12.5% whole wheat (pre- and post-pellet) and phytase and protease additions, individually and in combination, to diets containing 12.5% pre-pellet whole wheat on the performance of broiler chickens

    Get PDF
    Each of eight dietary treatments was offered to seven replicates (six birds per cage) of male Ross 308 chicks from 7 to 28 days post-hatch. The diets contained 741 g/kg wheat incorporated as ground (3.2 mm hammer-mill screen) wheat or 125 g/kg whole wheat included in diets, either pre- or post-pelleting. In Experiment 1 of the study, ground grain, pre-pellet and post-pellet whole grain diets were offered with and without phytase as a 3 × 2 factorial array of treatments. The effects of dietary treatments on gizzard and pancreas weights, bone mineralisation, excreta dry matter, growth performance, nutrient utilisation, digestibility coefficients and disappearance rates of starch and protein (N) in four small intestinal segments were determined. Post-pellet whole grain addition significantly increased gizzard weight by 12.5% (18.17 versus 16.15 g/kg;

    The interactions of exogenous phytase with whole grain feeding and effects of barley as the whole grain component in broiler diets based on wheat, sorghum and wheat-sorghum blends

    Get PDF
    The objectives of this experiment were two-fold; the first was to evaluate exogenous phytase in either conventional or whole grain diets as a 2 × 2 factorial treatment array. Wheat-sorghum blended rations containing 12.5% ground or whole barley were offered without and with 1000 FTU/kg exogenous phytase. The second objective was to evaluate barley as the whole grain component in diets based on wheat, sorghum and equal wheat-sorghum blends as a 3 × 2 factorial treatment array. Rations based on wheat, sorghum and wheat-sorghum blends were offered as an intact pellet containing 12.5% ground barley or offered as a mix of 12.5% whole barley and a pelleted concentrate. Each of the dietary treatments was offered to 7 replicates (6 birds per cage) of male Ross 308 chicks from 7 to 28 days post-hatch. Treatment effects on growth performance, gizzard and pancreas weights, gizzard pH, bone mineralisation, nutrient utilisation, digestibility coefficients of starch and protein (N) and starch:protein disappearance rate ratios in four small intestinal segments (proximal and distal jejunum, proximal and distal ileum), excreta dry matter and incidence of dilated proventriculi were determined. In the 2 × 2 analysis there was a significant (

    Comparative study on the aflatoxin B1 degradation ability of rumen fluid from Holstein steers and Korean native goats

    Get PDF
    The aflatoxin B1 degrading abilities of two different ruminants were compared in this study. One set of experiments evaluated the aflatoxin B1 degradation ability of different rumen fluid donors (steers vs. goats) as well as the rumen fluid filtration method (cheese cloth filtered vs. 0.45 µm Millipore) in a 2 × 2 factorial arrangement. Additional studies examined aflatoxin B1 degradation by collecting rumen fluid at different times (0, 3, 6, 9 and 12 h) after feeding. Cannulated Holstein steers (740 ± 10 kg bw) and Korean native goats (26 ± 3 kg bw) were fed a 60% timothy and 40% commercial diet with free access to water. Rumen fluid from Korean native goats demonstrated higher (p < 0.01) aflatoxin B1 degradability than Holstein steers. However, filtration method had no significant influence on degradability. In addition, aflatoxin degradation did not depend upon rumen fluid collection time after feeding, as no significant differences were observed. Finally, a comparison of two types of diet high in roughage found aflatoxin degradability in goats was higher with timothy hay opposed to rice straw, although individual variation existed. Thus, our findings showed the aflatoxin degradability is comparatively higher in goats compared to steers

    Synthesis of anthraquinone based electroactive polymers: A critical review

    Get PDF
    Conducting polymers or synthetic monomers have revolutionized the world and are at the heart of scientific research having a scope of vast diverse applications in many technological fields. The conducting and redox polymers have been investigated as energy storage systems because of their better sustainability, ease of synthesis, and environmental compatibility. Owing to the conducting properties of quinones, they gain too much importance among the researchers. Keeping in view the importance and sustainability of conducting polymers, for the first time, this study compiles a detailed overview of synthetic approaches followed by investigations on electrochemical properties and future directions. This study critically examines the synthetic process of simple monomers, substituted monomers, and polymers of anthraquinone (AQ) under the classification of low- and high-molecular-weight AQ–based derivatives, their working principles, and their electrochemical applications, which enable us to explore their novel possible application in automotive, solar cell devices, aircraft aileron, and biomedical equipment. Irrefutably, we confirm that high-molecular-weight polymeric AQ compounds are best in comparison with low-molecular-weight AQ monomers because they have pre-eminent properties over monomeric systems. Because of the significant properties of AQ, polymeric systems are high demanding and have emerged as a hot topic among the researchers these days. In the current scenario, this study is of immense importance because it identifies and discusses the right and sustainable combination and paves the way to utilize these novel materials in different technologies

    Grain Sorghum: A Conundrum for Chicken-Meat Production

    Get PDF
    The inclusion of grain sorghum in diets for broiler chickens is quite common; however, under Australian conditions, the utilisation of starch/energy by birds offered sorghum-based diets appears inadequate. Various factors inherent in sorghum, including kafirin, phenolic compounds and phytate, may limit energy utilisation. The recent quantification of kafirin, the dominant protein fraction in sorghum, has allowed its nutritional significance to be assessed. This is important as indirect evidence suggests that kafirin concentrations in local sorghums are increasing as an unintended consequence of breeding programs. Presently, Australian sorghums do not contain condensed tannin but, from analyses and assessments of other polyphenolic compounds and phenolic acids, “non-tannin” phenols appear to be negative influences. Anecdotally, white sorghums are considered to be superior to red varieties thus the fact that polyphenolic pigments are responsible for the “redness” of sorghum assumes relevance. Inclusions of sulphite reducing agents in broiler diets have generated promising responses but seem dependent on sorghum properties. Preliminary studies have shown the possibilities of using rapid visco-analyser (RVA) starch pasting profiles, promatest protein solubilities and grain textures to indicate sorghum quality and further studies are required to confirm these hypotheses. These assessments may indicate which sorghums will best respond to reducing agents such as sodium metabisulphite. Finally, the usually modest responses of broilers to exogenous feed enzyme inclusions in sorghum-based are considered in this review

    Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair

    Get PDF
    Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca2+ activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca2+, AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing

    LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency

    Get PDF
    BACKGROUND: A poorly functioning tumor vasculature is pro-oncogenic and may impede the delivery of therapeutics. Normalizing the vasculature, therefore, may be beneficial. We previously reported that the secreted glycoprotein leucine-rich α-2-glycoprotein 1 (LRG1) contributes to pathogenic neovascularization. Here, we investigate whether LRG1 in tumors is vasculopathic and whether its inhibition has therapeutic utility. METHODS: Tumor growth and vascular structure were analyzed in subcutaneous and genetically engineered mouse models in wild-type and Lrg1 knockout mice. The effects of LRG1 antibody blockade as monotherapy, or in combination with co-therapies, on vascular function, tumor growth, and infiltrated lymphocytes were investigated. FINDINGS: In mouse models of cancer, Lrg1 expression was induced in tumor endothelial cells, consistent with an increase in protein expression in human cancers. The expression of LRG1 affected tumor progression as Lrg1 gene deletion, or treatment with a LRG1 function-blocking antibody, inhibited tumor growth and improved survival. Inhibition of LRG1 increased endothelial cell pericyte coverage and improved vascular function, resulting in enhanced efficacy of cisplatin chemotherapy, adoptive T cell therapy, and immune checkpoint inhibition (anti-PD1) therapy. With immunotherapy, LRG1 inhibition led to a significant shift in the tumor microenvironment from being predominantly immune silent to immune active. CONCLUSIONS: LRG1 drives vascular abnormalization, and its inhibition represents a novel and effective means of improving the efficacy of cancer therapeutics

    Effective nebulization of interferon-γ using a novel vibrating mesh.

    Get PDF
    BACKGROUND: Interferon gamma (IFN-γ) is a clinically relevant immunomodulatory cytokine that has demonstrated significant potential in the treatment and management of respiratory diseases such as tuberculosis and pulmonary fibrosis. As with all large biomolecules, clinical translation is dependent on effective delivery to the disease site and delivery of IFN-γ as an aerosol offers a logical means of drug targeting. Effective localization is often hampered by instability and a lack of safe and efficient delivery systems. The present study sought to determine how effectively IFN-γ can be nebulized using two types of vibrating mesh nebulizer, each with differing mesh architectures, and to investigate the comparative efficiency of delivery of therapeutically active IFN-γ to the lungs. METHODS: Nebulization of IFN-γ was carried out using two different Aerogen vibrating mesh technologies with differing mesh architectures. These technologies represent both a standard commercially available mesh type (Aerogen Solo®) and a new iteration mesh (Photo-defined aperture plate (PDAP®). Extensive aerosol studies (aerosol output and droplet analysis, non-invasive and invasive aerosol therapy) were conducted in line with regulatory requirements and characterization of the stability and bioactivity of the IFN-γ post-nebulization was confirmed using SDS-PAGE and stimulation of Human C-X-C motif chemokine 10 (CXCL 10) also known as IFN-γ-induced protein 10KDa (IP 10) expression from THP-1 derived macrophages (THP-1 cells). RESULTS: Aerosol characterization studies indicated that a significant and reproducible dose of aerosolized IFN-γ can be delivered using both vibrating mesh technologies. Nebulization using both devices resulted in an emitted dose of at least 93% (100% dose minus residual volume) for IFN-γ. Characterization of aerosolized IFN-γ indicated that the PDAP was capable of generating droplets with a significantly lower mass median aerodynamic diameter (MMAD) with values of 2.79 ± 0.29 μm and 4.39 ± 0.25 μm for the PDAP and Solo respectively. The volume median diameters (VMD) of aerosolized IFN-γ corroborated this with VMDs of 2.33 ± 0.02 μm for the PDAP and 4.30 ± 0.02 μm for the Solo. SDS-PAGE gels indicated that IFN-γ remains stable after nebulization by both devices and this was confirmed by bioactivity studies using a THP-1 cell model in which an alveolar macrophage response to IFN-γ was determined. IFN-γ nebulized by the PDAP and Solo devices had no significant effect on the key inflammatory biomarker cytokine IP-10 release from this model in comparison to non-nebulized controls. Here we demonstrate that it is possible to combine IFN-γ with vibrating mesh nebulizer devices and facilitate effective aerosolisation with minimal impact on IFN-γ structure or bioactivity. CONCLUSIONS: It is possible to nebulize IFN-γ effectively with vibrating mesh nebulizer devices without compromising its stability. The PDAP allows for generation of IFN-γ aerosols with improved aerodynamic properties thereby increasing its potential efficiency for lower respiratory tract deposition over current technology, whilst maintaining the integrity and bioactivity of IFN-γ. This delivery modality therefore offers a rational means of facilitating the clinical translation of inhaled IFN-γ
    corecore