7 research outputs found

    Genetic correlation and causal relationships between cardio-metabolic traits and lung function impairment

    No full text
    Abstract Background: Associations of low lung function with features of poor cardio-metabolic health have been reported. It is, however, unclear whether these co-morbidities reflect causal associations, shared genetic heritability or are confounded by environmental factors. Methods: We performed three analyses: (1) cardio-metabolic health to lung function association tests in Northern Finland Birth cohort 1966, (2) cross-trait linkage disequilibrium score regression (LDSC) to compare genetic backgrounds and (3) Mendelian randomisation (MR) analysis to assess the causal effect of cardio-metabolic traits and disease on lung function, and vice versa (bidirectional MR). Genetic associations were obtained from the UK Biobank data or published large-scale genome-wide association studies (N > 82,000). Results: We observed a negative genetic correlation between lung function and cardio-metabolic traits and diseases. In Mendelian Randomisation analysis (MR), we found associations between type 2 diabetes (T2D) instruments and forced vital capacity (FVC) as well as FEV1/FVC. Body mass index (BMI) instruments were associated to all lung function traits and C-reactive protein (CRP) instruments to FVC. These genetic associations provide evidence for a causal effect of cardio-metabolic traits on lung function. Multivariable MR suggested independence of these causal effects from other tested cardio-metabolic traits and diseases. Analysis of lung function specific SNPs revealed a potential causal effect of FEV1/FVC on blood pressure. Conclusions: The present study overcomes many limitations of observational studies by using Mendelian Randomisation. We provide evidence for an independent causal effect of T2D, CRP and BMI on lung function with some of the T2D effect on lung function being attributed to inflammatory mechanisms. Furthermore, this analysis suggests a potential causal effect of FEV1/FVC on blood pressure. Our detailed analysis of the interplay between cardio-metabolic traits and impaired lung function provides the opportunity to improve the quality of existing intervention strategies

    Genetic analysis of over one million people identifies 535 novel loci for blood pressure

    Get PDF
    High blood pressure is the foremost heritable global risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits to date (systolic, diastolic, pulse pressure) in over one million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also reveal shared loci influencing lifestyle exposures. Our findings offer the potential for a precision medicine strategy for future cardiovascular disease prevention

    Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    No full text
    Abstract Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 x 10(⁻⁸)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.A Publisher Correction to this article was published on 16 March 2021

    Publisher Correction:Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals (Nature Genetics, (2020), 52, 12, (1314-1332), 10.1038/s41588-020-00713-x)

    Get PDF
    Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10−8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets

    Erratum to: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

    No full text
    In the version of this article originally published, the name of author Martin H. de Borst was coded incorrectly in the XML. The error has now been corrected in the HTML version of the paper

    Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

    Get PDF
    High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future

    Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    No full text
    corecore