6 research outputs found

    The dim and distant past: Constraining aerosol forcing history in the 20th century

    No full text
    Out of the multiple natural and anthropogenic factors affecting climate, greenhouse gases (GHGs) and aerosols from human activity dominate over the industrial era. The warming effect of the accumulating GHGs in the atmosphere is partly compensated by the aerosol cooling effect by reflecting incoming energy from the sun, and the historical disentanglement of these two effects can be used to estimate the future warming potential. This doctoral work aids the disentanglement through investigating atmospheric aerosol concentrations and effects over the industrial era. Initial findings show that a subset of state-of-the-art earth system models do not recreate aerosol effects as we see recorded by ground based instruments. To test whether this discrepancy is caused by errors in the aerosol emission inventories (which are input to these models) we have compared aerosol concentrations in ice cores to that in models and again found discrepancies. Since the discrepancy was most noticeable for Black Carbon (BC), we further investigated the model differences in BC treatment and found a large range in BC atmospheric lifetime. The longer the aerosol lifetime in the atmosphere is, the larger is the effect, meaning some models overestimate BC effects, despite the initial findings showing models in general underestimate aerosol effects, which underlines the complexity of aerosols' role and effects within the climate system

    Using Ice Cores to Evaluate CMIP6 Aerosol Concentrations Over the Historical Era

    No full text
    The radiative effect of anthropogenic aerosols is one of the largest uncertainties in Earth's energy budget over the industrial period. This uncertainty is in part due to sparse observations of aerosol concentrations in the pre‐satellite era. To address this lack of measurements, ice cores can be used, which contain the aerosol concentration record. To date, these observations have been under‐utilized for comparison to aerosol concentrations found in state‐of‐the‐art Earth system models (ESMs). Here we compare long term trends in concentrations of sulfate and black carbon (BC) between 15 ice cores and 11 ESMs over nine regions around the world during the period 1850–2000. We find that for sulfate concentration trends model results generally agree with ice core records, whereas for BC concentration the model trends differ from the records. Absolute concentrations of both investigated species are overestimated by the models, probably in part due to representation errors. However, we assume that biases in relative trends are not altered by these errors. Ice cores in the European Alps and Greenland record a maximum BC concentration before 1950, while most ESMs used in this study agree on a post‐1950 maximum. We source this bias to an error in BC emission inventories in Europe. Emission perturbation experiments using NorESM2‐LM support the observed finding that BC concentrations in Northern Greenland ice cores are recording European emissions. Errors in BC emission inventories have implications for all future and past studies where Coupled Model Intercomparison Project Phase 6 historical simulations are compared to observations relevant to aerosol forcing

    Using Ice Cores to Evaluate CMIP6 Aerosol Concentrations Over the Historical Era

    No full text
    The radiative effect of anthropogenic aerosols is one of the largest uncertainties in Earth's energy budget over the industrial period. This uncertainty is in part due to sparse observations of aerosol concentrations in the pre‐satellite era. To address this lack of measurements, ice cores can be used, which contain the aerosol concentration record. To date, these observations have been under‐utilized for comparison to aerosol concentrations found in state‐of‐the‐art Earth system models (ESMs). Here we compare long term trends in concentrations of sulfate and black carbon (BC) between 15 ice cores and 11 ESMs over nine regions around the world during the period 1850–2000. We find that for sulfate concentration trends model results generally agree with ice core records, whereas for BC concentration the model trends differ from the records. Absolute concentrations of both investigated species are overestimated by the models, probably in part due to representation errors. However, we assume that biases in relative trends are not altered by these errors. Ice cores in the European Alps and Greenland record a maximum BC concentration before 1950, while most ESMs used in this study agree on a post‐1950 maximum. We source this bias to an error in BC emission inventories in Europe. Emission perturbation experiments using NorESM2‐LM support the observed finding that BC concentrations in Northern Greenland ice cores are recording European emissions. Errors in BC emission inventories have implications for all future and past studies where Coupled Model Intercomparison Project Phase 6 historical simulations are compared to observations relevant to aerosol forcing

    Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations

    No full text
    The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. NorESM2 is based on the second version of the Community Earth System Model (CESM2) and shares with CESM2 the computer code infrastructure and many Earth system model components. However, NorESM2 employs entirely different ocean and ocean biogeochemistry models. The atmosphere component of NorESM2 (CAM-Nor) includes a different module for aerosol physics and chemistry, including interactions with cloud and radiation; additionally, CAM-Nor includes improvements in the formulation of local dry and moist energy conservation, in local and global angular momentum conservation, and in the computations for deep convection and air–sea fluxes. The surface components of NorESM2 have minor changes in the albedo calculations and to land and sea-ice models. We present results from simulations with NorESM2 that were carried out for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Two versions of the model are used: one with lower (∼ 2∘) atmosphere–land resolution and one with medium (∼ 1∘) atmosphere–land resolution. The stability of the pre-industrial climate and the sensitivity of the model to abrupt and gradual quadrupling of CO2 are assessed, along with the ability of the model to simulate the historical climate under the CMIP6 forcings. Compared to observations and reanalyses, NorESM2 represents an improvement over previous versions of NorESM in most aspects. NorESM2 appears less sensitive to greenhouse gas forcing than its predecessors, with an estimated equilibrium climate sensitivity of 2.5 K in both resolutions on a 150-year time frame; however, this estimate increases with the time window and the climate sensitivity at equilibration is much higher. We also consider the model response to future scenarios as defined by selected Shared Socioeconomic Pathways (SSPs) from the Scenario Model Intercomparison Project defined under CMIP6. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.0, and 3.9 K in NorESM2-LM, and 1.3, 2.1, 3.1, and 3.9 K in NorESM-MM, robustly similar in both resolutions. NorESM2-LM shows a rather satisfactory evolution of recent sea-ice area. In NorESM2-LM, an ice-free Arctic Ocean is only avoided in the SSP1-2.6 scenario

    Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations

    Get PDF
    Abstract. The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. NorESM2 is based on the second version of the Community Earth System Model (CESM2) and shares with CESM2 the computer code infrastructure and many Earth system model components. However, NorESM2 employs entirely different ocean and ocean biogeochemistry models. The atmosphere component of NorESM2 (CAM-Nor) includes a different module for aerosol physics and chemistry, including interactions with cloud and radiation; additionally, CAM-Nor includes improvements in the formulation of local dry and moist energy conservation, in local and global angular momentum conservation, and in the computations for deep convection and air–sea fluxes. The surface components of NorESM2 have minor changes in the albedo calculations and to land and sea-ice models. We present results from simulations with NorESM2 that were carried out for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Two versions of the model are used: one with lower (∼ 2∘) atmosphere–land resolution and one with medium (∼ 1∘) atmosphere–land resolution. The stability of the pre-industrial climate and the sensitivity of the model to abrupt and gradual quadrupling of CO2 are assessed, along with the ability of the model to simulate the historical climate under the CMIP6 forcings. Compared to observations and reanalyses, NorESM2 represents an improvement over previous versions of NorESM in most aspects. NorESM2 appears less sensitive to greenhouse gas forcing than its predecessors, with an estimated equilibrium climate sensitivity of 2.5 K in both resolutions on a 150-year time frame; however, this estimate increases with the time window and the climate sensitivity at equilibration is much higher. We also consider the model response to future scenarios as defined by selected Shared Socioeconomic Pathways (SSPs) from the Scenario Model Intercomparison Project defined under CMIP6. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.0, and 3.9 K in NorESM2-LM, and 1.3, 2.1, 3.1, and 3.9 K in NorESM-MM, robustly similar in both resolutions. NorESM2-LM shows a rather satisfactory evolution of recent sea-ice area. In NorESM2-LM, an ice-free Arctic Ocean is only avoided in the SSP1-2.6 scenario
    corecore