130 research outputs found

    First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)

    Full text link
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVA's unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVA's robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrograph's intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional "sum-of-Gaussians" instrumental profile: 1.8 m s1^{-1} over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte

    In-depth clinical and biological exploration of DNA Damage Immune Response (DDIR) as a biomarker for oxaliplatin use in colorectal cancer

    Get PDF
    PURPOSE: The DNA Damage Immune Response (DDIR) assay was developed in breast cancer (BC) based on biology associated with deficiencies in homologous recombination and Fanconi Anemia (HR/FA) pathways. A positive DDIR call identifies patients likely to respond to platinum-based chemotherapies in breast and oesophageal cancers. In colorectal cancer (CRC) there is currently no biomarker to predict response to oxaliplatin. We tested the ability of the DDIR assay to predict response to oxaliplatin-based chemotherapy in CRC and characterised the biology in DDIR-positive CRC. METHODS: Samples and clinical data were assessed according to DDIR status from patients who received either 5FU or FOLFOX within the FOCUS trial (n=361, stage 4), or neo-adjuvant FOLFOX in the FOxTROT trial (n=97, stage 2/3). Whole transcriptome, mutation and immunohistochemistry data of these samples were used to interrogate the biology of DDIR in CRC. RESULTS: Contrary to our hypothesis, DDIR negative patients displayed a trend towards improved outcome for oxaliplatin-based chemotherapy compared to DDIR positive patients. DDIR positivity was associated with Microsatellite Instability (MSI) and Colorectal Molecular Subtype 1 (CMS1). Refinement of the DDIR signature, based on overlapping interferon-related chemokine signalling associated with DDIR positivity across CRC and BC cohorts, further confirmed that the DDIR assay did not have predictive value for oxaliplatin-based chemotherapy in CRC. CONCLUSIONS: DDIR positivity does not predict improved response following oxaliplatin treatment in CRC. However, data presented here suggests the potential of the DDIR assay in identifying immune-rich tumours that may benefit from immune checkpoint blockade, beyond current use of MSI status

    Adults' Awareness of Faces Follows Newborns' Looking Preferences

    Get PDF
    From the first days of life, humans preferentially orient towards upright faces, likely reflecting innate subcortical mechanisms. Here, we show that binocular rivalry can reveal face detection mechanisms in adults that are surprisingly similar to inborn face detection mechanism. We used continuous flash suppression (CFS), a variant of binocular rivalry, to render stimuli invisible at the beginning of each trial and measured the time upright and inverted stimuli needed to overcome such interocular suppression. Critically, specific stimulus properties previously shown to modulate looking preferences in neonates similarly modulated adults' awareness of faces presented during CFS. First, the advantage of upright faces in overcoming CFS was strongly modulated by contrast polarity and direction of illumination. Second, schematic patterns consisting of three dark blobs were suppressed for shorter durations when the arrangement of these blobs respected the face-like configuration of the eyes and the mouth, and this effect was modulated by contrast polarity. No such effects were obtained in a binocular control experiment not involving CFS, suggesting a crucial role for face-sensitive mechanisms operating outside of conscious awareness. These findings indicate that visual awareness of faces in adults is governed by perceptual mechanisms that are sensitive to similar stimulus properties as those modulating newborns' face preferences

    Measurement of the 8B solar neutrino flux in SNO+ with very low backgrounds

    Get PDF
    A measurement of the 8B solar neutrino flux has been made using a 69.2 kt-day dataset acquired with the SNO+ detector during its water commissioning phase. At energies above 6 MeV the dataset is an extremely pure sample of solar neutrino elastic scattering events, owing primarily to the detector’s deep location, allowing an accurate measurement with relatively little exposure. In that energy region the best fit background rate is 0.25+0.09−0.07  events/kt−day, significantly lower than the measured solar neutrino event rate in that energy range, which is 1.03+0.13−0.12  events/kt−day. Also using data below this threshold, down to 5 MeV, fits of the solar neutrino event direction yielded an observed flux of 2.53+0.31−0.28(stat)+0.13−0.10(syst)×106  cm−2 s−1, assuming no neutrino oscillations. This rate is consistent with matter enhanced neutrino oscillations and measurements from other experiments

    Improved search for invisible modes of nucleon decay in water with the SNO+ detector

    Get PDF
    This paper reports results from a search for single and multi-nucleon disappearance from the 16^{16}O nucleus in water within the \snoplus{} detector using all of the available data. These so-called "invisible" decays do not directly deposit energy within the detector but are instead detected through their subsequent nuclear de-excitation and gamma-ray emission. New limits are given for the partial lifetimes: τ(ninv)>9.0×1029\tau(n\rightarrow inv) > 9.0\times10^{29} years, τ(pinv)>9.6×1029\tau(p\rightarrow inv) > 9.6\times10^{29} years, τ(nninv)>1.5×1028\tau(nn\rightarrow inv) > 1.5\times10^{28} years, τ(npinv)>6.0×1028\tau(np\rightarrow inv) > 6.0\times10^{28} years, and τ(ppinv)>1.1×1029\tau(pp\rightarrow inv) > 1.1\times10^{29} years at 90\% Bayesian credibility level (with a prior uniform in rate). All but the (nninvnn\rightarrow inv) results improve on existing limits by a factor of about 3.info:eu-repo/semantics/publishedVersio

    Observation of Antineutrinos from Distant Reactors using Pure Water at SNO+

    Full text link
    The SNO+ collaboration reports the first observation of reactor antineutrinos in a Cherenkov detector. The nearest nuclear reactors are located 240 km away in Ontario, Canada. This analysis used events with energies lower than in any previous analysis with a large water Cherenkov detector. Two analytical methods were used to distinguish reactor antineutrinos from background events in 190 days of data and yielded consistent observations of antineutrinos with a combined significance of 3.5 σ\sigma.Comment: v2: add missing author, add link to supplemental materia

    Measurement of neutron-proton capture in the SNO+ water phase

    Get PDF
    The SNO+ experiment collected data as a low-threshold water Cherenkov detector from September 2017 to July 2019. Measurements of the 2.2-MeV γ\gamma produced by neutron capture on hydrogen have been made using an Am-Be calibration source, for which a large fraction of emitted neutrons are produced simultaneously with a 4.4-MeV γ\gamma. Analysis of the delayed coincidence between the 4.4-MeV γ\gamma and the 2.2-MeV capture γ\gamma revealed a neutron detection efficiency that is centered around 50% and varies at the level of 1% across the inner region of the detector, which to our knowledge is the highest efficiency achieved among pure water Cherenkov detectors. In addition, the neutron capture time constant was measured and converted to a thermal neutron-proton capture cross section of 336.31.5+1.2336.3^{+1.2}_{-1.5} mb

    Search for invisible modes of nucleon decay in water with the SNO+ detector

    Get PDF
    This paper reports results from a search for nucleon decay through invisible modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of SNO+. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently deexcite, often emitting detectable gamma rays. A search for such gamma rays yields limits of 2.5×1029  y at 90% Bayesian credibility level (with a prior uniform in rate) for the partial lifetime of the neutron, and 3.6×1029  y for the partial lifetime of the proton, the latter a 70% improvement on the previous limit from SNO. We also present partial lifetime limits for invisible dinucleon modes of 1.3×1028  y for nn, 2.6×1028  y for pn and 4.7×1028  y for pp, an improvement over existing limits by close to 3 orders of magnitude for the latter two

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    Aim: Comprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW). Location: Global. Taxon: All extant mammal species. Methods: Range maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species). Results: Range maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use. Main conclusion: Expert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control.Fil: Marsh, Charles J.. Yale University; Estados UnidosFil: Sica, Yanina. Yale University; Estados UnidosFil: Burguin, Connor. University of New Mexico; Estados UnidosFil: Dorman, Wendy A.. University of Yale; Estados UnidosFil: Anderson, Robert C.. University of Yale; Estados UnidosFil: del Toro Mijares, Isabel. University of Yale; Estados UnidosFil: Vigneron, Jessica G.. University of Yale; Estados UnidosFil: Barve, Vijay. University Of Florida. Florida Museum Of History; Estados UnidosFil: Dombrowik, Victoria L.. University of Yale; Estados UnidosFil: Duong, Michelle. University of Yale; Estados UnidosFil: Guralnick, Robert. University Of Florida. Florida Museum Of History; Estados UnidosFil: Hart, Julie A.. University of Yale; Estados UnidosFil: Maypole, J. Krish. University of Yale; Estados UnidosFil: McCall, Kira. University of Yale; Estados UnidosFil: Ranipeta, Ajay. University of Yale; Estados UnidosFil: Schuerkmann, Anna. University of Yale; Estados UnidosFil: Torselli, Michael A.. University of Yale; Estados UnidosFil: Lacher, Thomas. Texas A&M University; Estados UnidosFil: Wilson, Don E.. National Museum of Natural History; Estados UnidosFil: Abba, Agustin Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Aguirre, Luis F.. Universidad Mayor de San Simón; BoliviaFil: Arroyo Cabrales, Joaquín. Instituto Nacional de Antropología E Historia, Mexico; MéxicoFil: Astúa, Diego. Universidade Federal de Pernambuco; BrasilFil: Baker, Andrew M.. Queensland University of Technology; Australia. Queensland Museum; AustraliaFil: Braulik, Gill. University of St. Andrews; Reino UnidoFil: Braun, Janet K.. Oklahoma State University; Estados UnidosFil: Brito, Jorge. Instituto Nacional de Biodiversidad; EcuadorFil: Busher, Peter E.. Boston University; Estados UnidosFil: Burneo, Santiago F.. Pontificia Universidad Católica del Ecuador; EcuadorFil: Camacho, M. Alejandra. Pontificia Universidad Católica del Ecuador; EcuadorFil: de Almeida Chiquito, Elisandra. Universidade Federal do Espírito Santo; BrasilFil: Cook, Joseph A.. University of New Mexico; Estados UnidosFil: Cuéllar Soto, Erika. Sultan Qaboos University; OmánFil: Davenport, Tim R. B.. Wildlife Conservation Society; TanzaniaFil: Denys, Christiane. Muséum National d'Histoire Naturelle; FranciaFil: Dickman, Christopher R.. The University Of Sydney; AustraliaFil: Eldridge, Mark D. B.. Australian Museum; AustraliaFil: Fernandez Duque, Eduardo. University of Yale; Estados UnidosFil: Francis, Charles M.. Environment And Climate Change Canada; CanadáFil: Frankham, Greta. Australian Museum; AustraliaFil: Freitas, Thales. Universidade Federal do Rio Grande do Sul; BrasilFil: Friend, J. Anthony. Conservation And Attractions; AustraliaFil: Giannini, Norberto Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Gursky-Doyen, Sharon. Texas A&M University; Estados UnidosFil: Hackländer, Klaus. Universitat Fur Bodenkultur Wien; AustriaFil: Hawkins, Melissa. National Museum of Natural History; Estados UnidosFil: Helgen, Kristofer M.. Australian Museum; AustraliaFil: Heritage, Steven. University of Duke; Estados UnidosFil: Hinckley, Arlo. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Holden, Mary. American Museum of Natural History; Estados UnidosFil: Holekamp, Kay E.. Michigan State University; Estados UnidosFil: Humle, Tatyana. University Of Kent; Reino UnidoFil: Ibáñez Ulargui, Carlos. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Jackson, Stephen M.. Australian Museum; AustraliaFil: Janecka, Mary. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Jenkins, Paula. Natural History Museum; Reino UnidoFil: Juste, Javier. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Leite, Yuri L. R.. Universidade Federal do Espírito Santo; BrasilFil: Novaes, Roberto Leonan M.. Universidade Federal do Rio de Janeiro; BrasilFil: Lim, Burton K.. Royal Ontario Museum; CanadáFil: Maisels, Fiona G.. Wildlife Conservation Society; Estados UnidosFil: Mares, Michael A.. Oklahoma State University; Estados UnidosFil: Marsh, Helene. James Cook University; AustraliaFil: Mattioli, Stefano. Università degli Studi di Siena; ItaliaFil: Morton, F. Blake. University of Hull; Reino UnidoFil: Ojeda, Agustina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Ordóñez Garza, Nicté. Instituto Nacional de Biodiversidad; EcuadorFil: Pardiñas, Ulises Francisco J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; ArgentinaFil: Pavan, Mariana. Universidade de Sao Paulo; BrasilFil: Riley, Erin P.. San Diego State University; Estados UnidosFil: Rubenstein, Daniel I.. University of Princeton; Estados UnidosFil: Ruelas, Dennisse. Museo de Historia Natural, Lima; PerúFil: Schai-Braun, Stéphanie. Universitat Fur Bodenkultur Wien; AustriaFil: Schank, Cody J.. University of Texas at Austin; Estados UnidosFil: Shenbrot, Georgy. Ben Gurion University of the Negev; IsraelFil: Solari, Sergio. Universidad de Antioquia; ColombiaFil: Superina, Mariella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Tsang, Susan. American Museum of Natural History; Estados UnidosFil: Van Cakenberghe, Victor. Universiteit Antwerp; BélgicaFil: Veron, Geraldine. Université Pierre et Marie Curie; FranciaFil: Wallis, Janette. Kasokwa-kityedo Forest Project; UgandaFil: Whittaker, Danielle. Michigan State University; Estados UnidosFil: Wells, Rod. Flinders University.; AustraliaFil: Wittemyer, George. State University of Colorado - Fort Collins; Estados UnidosFil: Woinarski, John. Charles Darwin University; AustraliaFil: Upham, Nathan S.. University of Yale; Estados UnidosFil: Jetz, Walter. University of Yale; Estados Unido

    Increasing access to integrated ESKD care as part of Universal Health Coverage

    Get PDF
    The global nephrology community recognizes the need for a cohesive strategy to address the growing problem of end-stage kidney disease (ESKD). In March 2018, the International Society of Nephrology hosted a summit on integrated ESKD care, including 92 individuals from around the globe with diverse expertise and professional backgrounds. The attendees were from 41 countries, including 16 participants from 11 low- and lower-middle–income countries. The purpose was to develop a strategic plan to improve worldwide access to integrated ESKD care, by identifying and prioritizing key activities across 8 themes: (i) estimates of ESKD burden and treatment coverage, (ii) advocacy, (iii) education and training/workforce, (iv) financing/funding models, (v) ethics, (vi) dialysis, (vii) transplantation, and (viii) conservative care. Action plans with prioritized lists of goals, activities, and key deliverables, and an overarching performance framework were developed for each theme. Examples of these key deliverables include improved data availability, integration of core registry measures and analysis to inform development of health care policy; a framework for advocacy; improved and continued stakeholder engagement; improved workforce training; equitable, efficient, and cost-effective funding models; greater understanding and greater application of ethical principles in practice and policy; definition and application of standards for safe and sustainable dialysis treatment and a set of measurable quality parameters; and integration of dialysis, transplantation, and comprehensive conservative care as ESKD treatment options within the context of overall health priorities. Intended users of the action plans include clinicians, patients and their families, scientists, industry partners, government decision makers, and advocacy organizations. Implementation of this integrated and comprehensive plan is intended to improve quality and access to care and thereby reduce serious health-related suffering of adults and children affected by ESKD worldwide
    corecore