287 research outputs found

    The Expansion and Radio Spectral Index of G21.5-0.9: Is PSR J1833-1034 the Youngest Pulsar?

    Full text link
    We report on new 5-GHz VLA radio observations of the pulsar-powered supernova remnant G21.5-0.9. These observations have allowed us to make a high-quality radio image of this remnant with a resolution of ~0.7". It has a filamentary structure similar to that seen in the Crab Nebula. Radio structure suggestive of the torus seen around the Crab pulsar is tentatively identified. We also compared the new image with one taken ~15 yr earlier at 1.5 GHz, both to find the expansion speed of the remnant and to make a spectral index image. Between 1991 and 2006, we find that the average expansion rate of the remnant is 0.11 +/- 0.02 %/year, corresponding, for a distance of 5 kpc, to a speed of 910 +/- 160 km/s wrt. the centre of the nebula. Assuming undecelerated expansion, this expansion speed implies that the age of G21.5-0.9 is 870 (+200,-150) yr, which makes PSR J1833-1034 one of the youngest, if not the youngest, known pulsars in the Galaxy.Comment: Accepted for publication in the MNRAS. 8 pages; For an animation showing the expansion of G21.5-0.9, see http://www.yorku.ca/bartel/G21new.html . (The only change in V3 of the preprint is to add the above url

    Chandra Observations of the Crab-like Supernova Remnant G21.5-0.9

    Get PDF
    Chandra observations of the Crab-like supernova remnant G21.5-0.9 reveal a compact central core and spectral variations indicative of synchrotron burn-off of higher energy electrons in the inner nebula. The central core is slightly extended, perhaps indicating the presence of an inner wind-shock nebula surrounding the pulsar. No pulsations are observed from the central region, yielding an upper limit of ~40% for the pulsed fraction. A faint outer shell may be the first evidence of the expanding ejecta and blast wave formed in the initial explosion, indicating a composite nature for G21.5-0.9.Comment: 4 pages, 2 figures, formatted with emulateapj, submitted to ApJ

    X-Ray Observations of the supernova remnant G21.5-0.9

    Full text link
    We present the analysis of archival X-ray observations of the supernova remnant (SNR) G21.5-0.9. Based on its morphology and spectral properties, G21.5-0.9 has been classified as a Crab-like SNR. In their early analysis of the CHANDRA calibration data, Slane et al. (2000) discovered a low-surface-brightness, extended emission. They interpreted this component as the blast wave formed in the supernova (SN) explosion. In this paper, we present the CHANDRA analysis using a total exposure of ~150 ksec. We also include ROSAT and ASCA observations. Our analysis indicates that the extended emission is non-thermal -- a result in agreement with XMM observations. The entire remnant of radius ~ 2'.5 is best fitted with a power law model with a photon index steepening away from the center. The total unabsorbed flux in the 0.5-10 keV is 1.1E-10 erg/cm2/s with an 85% contribution from the 40" radius inner core. Timing analysis of the High-Resolution Camera (HRC) data failed to detect any pulsations. We put a 16% upper limit on the pulsed fraction. We derive the physical parameters of the putative pulsar and compare them with those of other plerions (such as the Crab and 3C 58). G21.5-0.9 remains the only plerion whose size in X-rays is bigger than in the radio. Deep radio observations will address this puzzle.Comment: 23 pages including 11 figures and 3 tables; accepted by ApJ June 22, 2001; to appear in Oct 20, 2001 issue of Ap

    Fermi-LAT Search for Pulsar Wind Nebulae around gamma-ray Pulsars

    Full text link
    The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three pulsar wind nebulae: the Crab Nebula, Vela-X and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates from ~3 \times 10^{33} erg s1^{-1} to 5 \times 1038^{38} erg s1^{-1} and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the gamma-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X and a new pulsar wind nebula candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the H.E.S.S. and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.Comment: Accepted for publication in Astrophysical Journal, 42 pages, 17 figure

    Intra-articular temperatures of the knee in sports – An in-vivo study of jogging and alpine skiing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Up to date, no information exists about the intra-articular temperature changes of the knee related to activity and ambient temperature.</p> <p>Methods</p> <p>In 6 healthy males, a probe for intra-articular measurement was inserted into the notch of the right knee. Each subject was jogging on a treadmill in a closed room at 19°C room temperature and skiing in a ski resort at -3°C outside temperature for 60 minutes. In both conditions, temperatures were measured every fifteen minutes intra-articulary and at the skin surface of the knee. A possible influence on joint function and laxity was evaluated before and after activity. Statistical analysis of intra-articular and skin temperatures was done using nonparametric Wilcoxon's sign rank sum test and Mann-Whitney's-U-Test.</p> <p>Results</p> <p>Median intra-articular temperatures increased from 31.4°C before activity by 2.1°C, 4°C, 5.8°C and 6.1°C after 15, 30, 45 and 60 min of jogging (all p ≤ 0.05). Median intra-articular temperatures dropped from 32.2°C before activity by 0.5°C, 1.9°C, 3.6°C and 1.1°C after 15, 30, 45 and 60 min of skiing (all n.s.). After 60 minutes of skiing (jogging), the median intra-articular temperature was 19.6% (8.7%) higher than the skin surface temperature at the knee. Joint function and laxity appeared not to be different before and after activity within both groups.</p> <p>Conclusion</p> <p>This study demonstrates different changes of intra-articular and skin temperatures during sports in jogging and alpine skiing and suggests that changes are related to activity and ambient temperature.</p

    Laser Patterning Pretreatment before Thermal Spraying: A Technique to Adapt and Control the Surface Topography to Thermomechanical Loading and Materials

    Get PDF
    Coating characteristics are highly dependent on substrate preparation and spray parameters. Hence, the surface must be adapted mechanically and physicochemically to favor coating–substrate adhesion. Conventional surface preparation methods such as grit blasting are limited by surface embrittlement and produce large plastic deformations throughout the surface, resulting in compressive stress and potential cracks. Among all such methods, laser patterning is suitable to prepare the surface of sensitive materials. No embedded grit particles can be observed, and high-quality coatings are obtained. Finally, laser surface patterning adapts the impacted surface, creating large anchoring area. Optimized surface topographies can then be elaborated according to the material as well as the application. The objective of this study is to compare the adhesive bond strength between two surface preparation methods, namely grit blasting and laser surface patterning, for two material couples used in aerospace applications: 2017 aluminum alloy and AISI 304L stainless steel coated with NiAl and YSZ, respectively. Laser patterning significantly increases adherence values for similar contact area due to mixed-mode (cohesive and adhesive) failure. The coating is locked in the pattern

    Molecular Biomarkers of Vascular Dysfunction in Obstructive Sleep Apnea

    Get PDF
    Untreated and long-lasting obstructive sleep apnea (OSA) may lead to important vascular abnormalities, including endothelial cell (EC) dysfunction, hypertension, and atherosclerosis. We observed a correlation between microcirculatory reactivity and endothelium-dependent release of nitric oxide in OSA patients. Therefore, we hypothesized that OSA affects (micro)vasculature and we aimed to identify vascular gene targets of OSA that could possibly serve as reliable biomarkers of severity of the disease and possibly of vascular risk. Using quantitative RT-PCR, we evaluated gene expression in skin biopsies of OSA patients, mouse aortas from animals exposed to 4-week intermittent hypoxia (IH; rapid oscillations in oxygen desaturation and reoxygenation), and human dermal microvascular (HMVEC) and coronary artery endothelial cells (HCAEC) cultured under IH. We demonstrate a significant upregulation of endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha-induced protein 3 (TNFAIP3; A20), hypoxia-inducible factor 1 alpha (HIF-1α?? and vascular endothelial growth factor (VEGF) expression in skin biopsies obtained from OSA patients with severe nocturnal hypoxemia (nadir saturated oxygen levels [SaO2]<75%) compared to mildly hypoxemic OSA patients (SaO2 75%–90%) and a significant upregulation of vascular cell adhesion molecule 1 (VCAM-1) expression compared to control subjects. Gene expression profile in aortas of mice exposed to IH demonstrated a significant upregulation of eNOS and VEGF. In an in vitro model of OSA, IH increased expression of A20 and decreased eNOS and HIF-1α expression in HMVEC, while increased A20, VCAM-1 and HIF-1αexpression in HCAEC, indicating that EC in culture originating from distinct vascular beds respond differently to IH stress. We conclude that gene expression profiles in skin of OSA patients may correlate with disease severity and, if validated by further studies, could possibly predict vascular risk in OSA patients

    Coupling of CFD and semiempirical methods for designing three-phase condensate separator: case study and experimental validation

    Get PDF
    This study presents an approach to determine the dimensions of three-phase separators. First, we designed different vessel configurations based on the fluid properties of an Iranian gas condensate field. We then used a comprehensive computational fluid dynamic (CFD) method for analyzing the three-phase separation phenomena. For simulation purposes, the combined volume of fluid–discrete particle method (DPM) approach was used. The discrete random walk (DRW) model was used to include the effect of arbitrary particle movement due to variations caused by turbulence. In addition, the comparison of experimental and simulated results was generated using different turbulence models, i.e., standard k–ε, standard k–ω, and Reynolds stress model. The results of numerical calculations in terms of fluid profiles, separation performance and DPM particle behavior were used to choose the optimum vessel configuration. No difference between the dimensions of the optimum vessel and the existing separator was found. Also, simulation data were compared with experimental data pertaining to a similar existing separator. A reasonable agreement between the results of numerical calculation and experimental data was observed. These results showed that the used CFD model is well capable of investigating the performance of a three-phase separator

    Glass-ceramics: Their production from wastes-a review

    No full text

    The effect of type of femoral component fixation on mortality and morbidity after hip hemiarthroplasty:A systematic review and meta-analysis

    Get PDF
    Background: Hip hemiarthroplasty is a well-established treatment of displaced femoral neck fracture, although debate exists over whether cemented or uncemented fixation is superior. Uncemented prostheses have typically been used in younger, healthier patients and cemented prostheses in older patients with less-stable bone. Also, earlier research has suggested that bone cement has cytotoxic effects and may trigger cardiovascular and respiratory adverse events. Questions/Purposes: The aim of this systematic review and meta-analysis was to compare morbidity and mortality rates after cemented and uncemented hemiarthroplasty for the treatment of displaced femoral neck fractures in elderly patients. Methods: Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched seven medical databases for randomized clinical trials and observational studies. We compared cemented and uncemented hemiarthroplasty using the Harris Hip Score (HHS), as well as measures of postoperative pain, mortality, and complications. Data were extracted and pooled as risk ratios or standardized mean difference with their corresponding 95% confidence intervals in a meta-analysis model. Results: The meta-analysis included 34 studies (12 randomized trials and 22 observational studies), with a total of 42,411 patients. In the pooled estimate, cemented hemiarthroplasty was associated with less risk of postoperative pain than uncemented hemiarthroplasty. There were no significant differences between groups regarding HHS or rates of postoperative mortality, pulmonary embolism, cardiac arrest, myocardial infarction, acute cardiac arrhythmia, or deep venous thrombosis. Conclusions: While we found that cemented hemiarthroplasty results in less postoperative pain than uncemented hemiarthroplasty in older patients with femoral neck fracture, the lack of significant differences in functional hip scores, mortality, and complications was surprising. Further high-level research is needed
    corecore