1,071 research outputs found

    Monte-Carlo modelling of multi-object adaptive optics performance on the European Extremely Large Telescope

    Get PDF
    The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-object adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcseconds per pixel, and a field of view of at least 7 arcseconds, that EMCCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is necessary, and that sky coverage can be improved by a slight reduction in natural guide star sub-aperture count without significantly affecting tomographic performance. We find that adaptive optics correction can be maintained across a wide field of view, up to 7 arcminutes in diameter. We also recommend the use of at least 4 laser guide stars, and include ground-layer and multi-object adaptive optics performance estimates

    A Shack-Hartmann wavefront sensor projected on to the sky with reduced focal anisoplanatism

    Get PDF
    A method for producing a laser guide star wavefront sensor for adaptive optics with reduced focal anisoplanatism is presented. A theoretical analysis and numerical simulations have been carried out and the results are presented. The technique, named Sky-Projected Laser Array Shack–Hartmann (SPLASH), is shown to suffer considerably less from focal anisoplanatism than a conventional laser guide star system. The method is potentially suitable for large telescope apertures (8 m), and possibly for extremely large telescopes

    The influence of charge on the multiple thermal transitions observed in xanthan

    Get PDF
    Helix-coil transitions in xanthans occur at lower temperatures when the pyruvate group is charged, destabilising the polymer chains. Increasing salt content increases the transition temperature by reducing the effective charge on the pyruvate. A simple equivalent mass action model predicts how transition temperatures change as a function of salt concentration. The functional form of the change in transition temperature (1/T) versus natural log (salt concentration) is approximately linear and similar to more traditional polyelectrolyte theories. Transition temperatures in xanthans containing nominally homogeneous pyruvate contents show biphasic transitions, this is because the phases contain different pyruvate levels, however the transitions approach one another in temperature and eventually merge as salt content is increased. It is proposed that pyruvate groups, despite being present at a lower concentration relative to glucuronic acid, dominate the charge interactions due to their location on the outside of the helices

    Stereo-SCIDAR: optical turbulence profiling with high sensitivity using a modified SCIDAR instrument

    Get PDF
    The next generation of adaptive optics systems will require tomographic reconstruction techniques to map the optical refractive index fluctuations, generated by the atmospheric turbulence, along the line of sight to the astronomical target. These systems can be enhanced with data from an external atmospheric profiler. This is important for Extremely Large Telescope scale tomography. Here we propose a new instrument which utilizes the generalized Scintillation Detection And Ranging (SCIDAR) technique to allow high sensitivity vertical profiles of the atmospheric optical turbulence and wind velocity profile above astronomical observatories. The new approach, which we refer to as ‘stereo-SCIDAR’, uses a stereoscopic system with the scintillation pattern from each star of a double-star target incident on a separate detector. Separating the pupil images for each star has several advantages including increased magnitude difference tolerance for the target stars; negating the need for re-calibration due to the normalization errors usually associated with SCIDAR; an increase of at least a factor of 2 in the signal-to-noise ratio of the cross-covariance function and hence the profile for equal magnitude target stars and up to a factor of 16 improvement for targets of 3 mag difference and easier real-time reconstruction of the wind-velocity profile. Theoretical response functions are calculated for the instrument, and the performance is investigated using a Monte Carlo simulation. The technique is demonstrated using data recorded at the 2.5-m Nordic Optical Telescope and the 1.0-m Jacobus Kapteyn Telescope, both on La Palma

    The implications of service quality gaps for strategy implementation

    Get PDF
    This article addresses the problem of service quality strategy implementation and proposes three interrelated models: a static model of the organisation; a comprehensive dynamic model of the implementation process, both synthesised from the literature; and a mixed model, which integrates static and dynamic models. The mixed model is combined with the service quality gaps (SQGs) model, drawn at a previous congress paper, to propose a map of the pattern of SQGs occurring at each implementation stage; the organisational variables that can be manipulated to eliminate SQGs; and several implications to practising managers

    A molecular communication channel consisting of a single reversible chain of hydrogen bonds in a conformationally flexible oligomer

    Get PDF
    Communication of information through the global switching of conformation in synthetic molecules has hitherto entailed the inversion of chirality. Here, we report a class of oligomer through which information may be communicated through a global reversal of polarity. Ethylene-bridged oligoureas are constitutionally symmetrical, conformationally flexible molecules organized by a single chain of hydrogen bonds running the full length of the oligomer. NMR reveals that this hydrogen-bonded chain may undergo a coherent reversal of directionality. The directional uniformity of the hydrogen-bond chain allows it to act as a channel for the spatial communication of information on a molecular scale. A binding site at the terminus of an oligomer detects local information about changes in pH or anion concentration and transmits that information—in the form of a directionality switch in the hydrogen-bond chain—to a remote polarity-sensitive fluorophore. This propagation of polarity-encoded information provides a new mechanism for molecular communication

    Daytime site characterisation of La Palma, and its relation to night-time conditions

    Get PDF
    This paper presents preliminary daytime profiles taken using a Wide-Field Shack-Hartmann Sensor at the Swedish Solar Telescope (SST), La Palma. These are contrasted against Stereo-SCIDAR data from corresponding nights to assess the validity of the assumptions currently used for simulating the performances of possible Multi-Conjugate Adaptive Optics (MCAO) systems for future solar telescopes, especially the assumption that the structure of the high altitude turbulence is mostly similar between the day and the night. We find that for our data both the altitude and the strength of the turbulence differ between the day and the night, although more data is required to draw any conclusions about typical behaviour and conditions

    The role of hydrodynamics in structuring in situ ammonium uptake within a submerged macrophyte community

    Get PDF
    In low-nutrient, macrophyte-dominated coastal zones, benthic ammonium (NH4+) uptake may be influencedby the structural properties of plant canopies via their effect on near-bed hydrodynamics. Using adual-tracer (uranine and 15NH4+) method that does not require enclosures, we examined how this processaffects nutrient uptake rates within a tidally dominated, patchy Caulerpa prolifera–Cymodocea nodosalandscape. NH4+ uptake was determined by calculating tissue 15N excesses and correcting for 15N enrichmentas derived from uranine concentration. Vertical hydrodynamic profiles were measured in thedownstream flow direction from outside to inside of the C. nodosa bed by using an array of acousticDoppler velocimeters. The transition from a C. prolifera to a C. nodosa bed included a change in bothbenthic canopy properties (short and dense to tall and sparse) and sediment topography (0.2-m increasein water column depth) that resulted in an increase in longitudinal advection and turbulent diffusivitywithin the C. nodosa canopy between 0.5 and 1.5mfrom the leading edge. Vertical differences in canopywater exchange appeared to explain variations in uptake between biotic functional groups; however, noclear differences in longitudinal uptake were found. Using in situ labeling, this study demonstrated for thefirst time the role of hydrodynamics in structuring NH4+ uptake within an undisturbed, patchy macrophytelandscape

    One loop photon-graviton mixing in an electromagnetic field: Part 2

    Full text link
    In part 1 of this series compact integral representations had been obtained for the one-loop photon-graviton amplitude involving a charged spin 0 or spin 1/2 particle in the loop and an arbitrary constant electromagnetic field. In this sequel, we study the structure and magnitude of the various polarization components of this amplitude on-shell. Explicit expressions are obtained for a number of limiting cases.Comment: 31 pages, 3 figure
    • …
    corecore