4,185 research outputs found
Culture-specific programs for children and adults from minority groups who have asthma (Review)
Background
People with asthma who come from minority groups have poorer asthma outcomes and more asthma related visits to Emergency Departments (ED). Various programmes are used to educate and empower people with asthma and these have previously been shown to improve certain asthma outcomes. Models of care for chronic diseases in minority groups usually include a focus of the cultural context of the individual and not just the symptoms of the disease. Therefore, questions about whether culturally specific asthma education programmes for people from minority groups are effective at improving asthma outcomes, are feasible and are cost-effective need to be answered.
Objectives
To determine whether culture-specific asthma programmes, in comparison to generic asthma education programmes or usual care, improve asthma related outcomes in children and adults with asthma who belong to minority groups.
Search strategy
We searched the Cochrane Register of Controlled Trials (CENTRAL), the Cochrane Airways Group Specialised Register, MEDLINE, EMBASE, review articles and reference lists of relevant articles. The latest search was performed in May 2008.
Selection criteria
All randomised controlled trials (RCTs) comparing the use of culture-specific asthma education programmes with generic asthma education programmes, or usual care, in adults or children from minority groups who suffer from asthma.
Data collection and analysis
Two review authors independently selected, extracted and assessed the data for inclusion. We contacted authors for further information if required.
Main results
Four studies were eligible for inclusion in the review. A total of 617 patients, aged from 5 to 59 years were included in the meta-analysis of data. Use of a culture-specific programme was superior to generic programmes or usual care, in improving asthma quality of life scores in adults, pooled WMD 0.25 (95% CI 0.09 to 0.41), asthma knowledge scores in children, WMD 3.30 (95% CI 1.07 to 5.53), and in a single study, reducing asthma exacerbation in children (risk ratio for hospitalisations 0.32, 95% CI 0.15, 0.70).
Authors' conclusions
Current limited data show that culture-specific programmes for adults and children from minority groups with asthma, are more effective than generic programmes in improving most (quality of life, asthma knowledge, asthma exacerbations, asthma control) but not all asthma outcomes. This evidence is limited by the small number of included studies and the lack of reported outcomes. Further trials are required to answer this question conclusively
Incorporating DNA Sequencing into Current Prenatal Screening Practice for Down's Syndrome
PMCID: PMC3604109This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
DNA methylation profiling to assess pathogenicity of BRCA1 unclassified variants in breast cancer
Germline pathogenic mutations in BRCA1 increase risk of developing breast cancer. Screening for mutations in BRCA1 frequently identifies sequence variants of unknown pathogenicity and recent work has aimed to develop methods for determining pathogenicity. We previously observed that tumor DNA methylation can differentiate BRCA1-mutated from BRCA1-wild type tumors. We hypothesized that we could predict pathogenicity of variants based on DNA methylation profiles of tumors that had arisen in carriers of unclassified variants. We selected 150 FFPE breast tumor DNA samples [47 BRCA1 pathogenic mutation carriers, 65 BRCAx (BRCA1-wild type), 38 BRCA1 test variants] and analyzed a subset (n=54) using the Illumina 450K methylation platform, using the remaining samples for bisulphite pyrosequencing validation. Three validated markers (BACH2, C8orf31, and LOC654342) were combined with sequence bioinformatics in a model to predict pathogenicity of 27 variants (independent test set). Predictions were compared with standard multifactorial likelihood analysis. Prediction was consistent for c.5194-12G>A (IVS 19-12 G>A) (P>0.99); 13 variants were considered not pathogenic or likely not pathogenic using both approaches. We conclude that tumor DNA methylation data alone has potential to be used in prediction of BRCA1 variant pathogenicity but is not independent of estrogen receptor status and grade, which are used in current multifactorial models to predict pathogenicity
UBE2QL1 is Disrupted by a Constitutional Translocation Associated with Renal Tumor Predisposition and is a Novel Candidate Renal Tumor Suppressor Gene
Investigation of rare familial forms of renal cell carcinoma (RCC) has led to the identification of genes such as VHL and MET that are also implicated in the pathogenesis of sporadic RCC. In order to identify a novel candidate renal tumor suppressor gene, we characterized the breakpoints of a constitutional balanced translocation, t(5;19)(p15.3;q12), associated with familial RCC and found that a previously uncharacterized gene UBE2QL1 was disrupted by the chromosome 5 breakpoint. UBE2QL1 mRNA expression was downregulated in 78.6% of sporadic RCC and, although no intragenic mutations were detected, gene deletions and promoter region hypermethylation were detected in 17.3% and 20.3%, respectively, of sporadic RCC. Reexpression of UBE2QL1 in a deficient RCC cell line suppressed anchorage-independent growth. UBE2QL1 shows homology to the E2 class of ubiquitin conjugating enzymes and we found that (1) UBE2QL1 possesses an active-site cysteine (C88) that is monoubiquitinated in vivo, and (2) UBE2QL1 interacts with FBXW7 (an F box protein providing substrate recognition to the SCF E3 ubiquitin ligase) and facilitates the degradation of the known FBXW7 targets, CCNE1 and mTOR. These findings suggest UBE2QL1 as a novel candidate renal tumor suppressor gen
Echinoderms have bilateral tendencies
Echinoderms take many forms of symmetry. Pentameral symmetry is the major
form and the other forms are derived from it. However, the ancestors of
echinoderms, which originated from Cambrian period, were believed to be
bilaterians. Echinoderm larvae are bilateral during their early development.
During embryonic development of starfish and sea urchins, the position and the
developmental sequence of each arm are fixed, implying an auxological
anterior/posterior axis. Starfish also possess the Hox gene cluster, which
controls symmetrical development. Overall, echinoderms are thought to have a
bilateral developmental mechanism and process. In this article, we focused on
adult starfish behaviors to corroborate its bilateral tendency. We weighed
their central disk and each arm to measure the position of the center of
gravity. We then studied their turning-over behavior, crawling behavior and
fleeing behavior statistically to obtain the center of frequency of each
behavior. By joining the center of gravity and each center of frequency, we
obtained three behavioral symmetric planes. These behavioral bilateral
tendencies might be related to the A/P axis during the embryonic development of
the starfish. It is very likely that the adult starfish is, to some extent,
bilaterian because it displays some bilateral propensity and has a definite
behavioral symmetric plane. The remainder of bilateral symmetry may have
benefited echinoderms during their evolution from the Cambrian period to the
present
An evaluation of the capability of data conversion of impression creep test
High temperature power plant components are now working far beyond their operative designed life. Establishing their in-service material properties has become a matter of significant concern for power generation companies. Advantages for the assessment of creep material properties may come from miniature specimen creep testing techniques, like impression creep testing method, which can be treated as a quasistatic non-destructive technique and requires a small volume of material that can be scooped from in-service critical components, and can produce reliable secondary creep data.
This paper presents an overview of impression creep testing method to highlight the capability in determining the minimum creep strain rate data by use of conversion relationships that relates uniaxial creep test data and impression creep test data. Stepped-load and stepped-temperature impression creep tests are also briefly described. Furthermore, the paper presents some new impression creep test data and their correlation with uniaxial data, obtained from P91, P92 and ½CrMoV steels at different stresses and temperatures. The presented data, in terms of creep strain rate against the reference uniaxial stress, are useful for calibration of impression creep testing technique and provide further comparative results for the evaluation of the reliability of the method in determining secondary creep properties
State based model of long-term potentiation and synaptic tagging and capture
Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular, in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for further theoretical work on the role of STC in learning and memory
Mineral maturity and crystallinity index are distinct characteristics of bone mineral
The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis
Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group
The Hierarchical Reference Theory (HRT) of fluids is a general framework for
the description of phase transitions in microscopic models of classical and
quantum statistical physics. The foundations of HRT are briefly reviewed in a
self-consistent formulation which includes both the original sharp cut-off
procedure and the smooth cut-off implementation, which has been recently
investigated. The critical properties of HRT are summarized, together with the
behavior of the theory at first order phase transitions. However, the emphasis
of this presentation is on the close relationship between HRT and non
perturbative renormalization group methods, as well as on recent
generalizations of HRT to microscopic models of interest in soft matter and
quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic
Recommended from our members
The influence of the accessory genome on bacterial pathogen evolution
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution
- …
