34 research outputs found

    On the fan associated to a linear code

    Get PDF
    International audienceWe will show how one can compute all reduced Gröbner bases with re-spect to a degree compatible ordering for code ideals -even though these binomial ideals are not toric. To this end, the correspondence of linear codes and binomial ideals will be briefly described as well as their resemblance to toric ideals. Finally, we will hint at applications of the degree compatible Gröbner fan to the code equivalence problem

    On the ideal associated to a linear code

    Get PDF
    This article aims to explore the bridge between the algebraic structure of a linear code and the complete decoding process. To this end, we associate a specific binomial ideal I+(C)I_+(\mathcal C) to an arbitrary linear code. The binomials involved in the reduced Gr\"obner basis of such an ideal relative to a degree-compatible ordering induce a uniquely defined test-set for the code, and this allows the description of a Hamming metric decoding procedure. Moreover, the binomials involved in the Graver basis of I+(C)I_+(\mathcal C) provide a universal test-set which turns out to be a set containing the set of codewords of minimal support of the code

    Betti Numbers and Generalized Hamming Weights

    Get PDF
    International audienceWe can associate to each linear code C defined over a finite field the matroid M[H] of its parity check matrix H. For any matroid M one can define its generalized Hamming weights which are the same as those of the code C. In [2] the authors show that the generalized Hamming weights of a matroid are determined by the N-graded Betti numbers of the Stanley-Reisner ring of the simplicial complex whose faces are the independent set of M. In this talk we go a step further. Our practical results indicate that the generalized Hamming weights of a linear code C can be obtained from the monomial ideal associated with a test-set for C. Moreover, recall that in [3] we use the Gröbner representation of a linear code C to provide a test-set for C. Our results are still a work in progress, but its applications to Coding Theory and Cryptography are of great value

    Computational Aspects of Retrieving a Representation of an Algebraic Geometry Code

    Get PDF
    Producción CientíficaCode-based cryptography is an interesting alternative to classic number-theoretic public key cryptosystem since it is conjectured to be secure against quantum computer attacks. Many families of codes have been proposed for these cryptosystems such as algebraic geometry codes. In [Designs, Codes and Cryptography, pages 1-16, 2012] -for so called very strong algebraic geometry codes C=CL(X,P,E)\mathcal C=C_L(\mathcal X, \mathcal P, E), where X\mathcal X is an algebraic curve over Fq\mathbb F_q, P\mathcal P is an nn-tuple of mutually distinct Fq\mathbb F_q-rational points of X\mathcal X and EE is a divisor of X\mathcal X with disjoint support from P\mathcal P --- it was shown that an equivalent representation C=CL(Y,Q,F)\mathcal C=C_L(\mathcal Y, \mathcal Q, F) can be found. The nn-tuple of points is obtained directly from a generator matrix of C\mathcal C, where the columns are viewed as homogeneous coordinates of these points. The curve Y\mathcal Y is given by I2(Y)I_2(\mathcal Y), the homogeneous elements of degree 22 of the vanishing ideal I(Y)I(\mathcal Y). Furthermore, it was shown that I2(Y)I_2(\mathcal Y) can be computed efficiently as the kernel of certain linear map. What was not shown was how to get the divisor FF and how to obtain efficiently an adequate decoding algorithm for the new representation. The main result of this paper is an efficient computational approach to the first problem, that is getting FF. The security status of the McEliece public key cryptosystem using algebraic geometry codes is still not completely settled and is left as an open problemThis research was partly supported by the Danish National Research Foundation and the National Science Foundation of China (Grant No.\ 11061130539) for the Danish-Chinese Center for Applications of Algebraic Geometry in Coding Theory and Cryptography and by Spanish grants MTM2007-64704, MTM2010-21580-C02-02 and MTM2012-36917-C03-03. Part of the research of the second author is also funded by the Vernon Wilson Endowed Chair at Eastern Kentucky University during his sabbatical leave

    On the fan associated to a linear code

    Get PDF
    International audienceWe will show how one can compute all reduced Gröbner bases with re-spect to a degree compatible ordering for code ideals -even though these binomial ideals are not toric. To this end, the correspondence of linear codes and binomial ideals will be briefly described as well as their resemblance to toric ideals. Finally, we will hint at applications of the degree compatible Gröbner fan to the code equivalence problem

    Haplosporidium pinnae Parasite Detection in Seawater Samples

    Get PDF
    In this study, we investigated the presence of the parasite Haplosporidium pinnae, which is a pathogen for the bivalve Pinna nobilis, in water samples from different environments. Fifteen mantle samples of P. nobilis infected by H. pinnae were used to characterize the ribosomal unit of this parasite. The obtained sequences were employed to develop a method for eDNA detection of H. pinnae. We collected 56 water samples (from aquaria, open sea and sanctuaries) for testing the methodology. In this work, we developed three different PCRs generating amplicons of different lengths to determine the level of degradation of the DNA, since the status of H. pinnae in water and, therefore, its infectious capacity are unknown. The results showed the ability of the method to detect H. pinnae in sea waters from different areas persistent in the environment but with different degrees of DNA fragmentation. This developed method offers a new tool for preventive analysis for monitoring areas and to better understand the life cycle and the spread of this parasite.info:eu-repo/semantics/publishedVersio

    Free Resolutions and Generalized Hamming Weights of binary linear codes

    Get PDF
    In this work, we explore the relationship between free resolution of some monomial ideals and Generalized Hamming Weights (GHWs) of binary codes. More precisely, we look for a structure smaller than the set of codewords of minimal support that provides us some information about the GHWs. We prove that the first and second generalized Hamming weight of a binary linear code can be computed (by means of a graded free resolution) from a set of monomials associated to a binomial ideal related with the code. Moreover, the remaining weights are bounded by the Betti numbers for that set

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
    corecore