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We can associate to each linear code C defined over a finite field the matroid
M[H] of its parity check matrix H. For any matroid M one can define its gener-
alized Hamming weights which are the same as those of the code C . In [2] the
authors show that the generalized Hamming weights of a matroid are determined
by the N-graded Betti numbers of the Stanley-Reisner ring of the simplicial com-
plex whose faces are the independent set of M. In this talk we go a step further.
Our practical results indicate that the generalized Hamming weights of a linear
code C can be obtained from the monomial ideal associated with a test-set for C .
Moreover, recall that in [3] we use the Gröbner representation of a linear code C
to provide a test-set for C .

Our results are still a work in progress, but its applications to Coding Theory
and Cryptography are of great value.

1 Notation and Prerequisites

We begin with an introduction of basic definitions and some known results. By N,
Z, Fq (where q is a primer power) we denote the set of positive integers, the set of
integers and the finite field with q elements, respectively.

Definition 1 A matroid M is a pair (E, I) consisting of a finite set E called ground
set and a collection I of subsets of E called independent sets, satisfying the follow-
ing conditions:

1. The empty set is independent, i.e. /0 ∈ I

2. If A ∈ I and B⊂ A, then B ∈ I

3. If A,B ∈ I and |A|< |B|, then there exists e ∈ B\A such that A∪{e} ∈ I

Let M = (E, I) be a matroid. A maximal independent subset of E is called
a basis of M. A direct consequence of the previous definition is that all bases
of M have the same cardinality. Thus, we define the rank of the matroid M as the
cardinality of any basis of M, denoted by rank(M). A subset E that does not belong
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to I is called dependent set. Minimal dependent subsets of E are known as circuits
of M. A set is said to be a cycle if it is a disjoint union of circuits. The collection
of cycles of M is denoted by C (M). For all σ ∈ E, the nulity function of σ is given
by n(σ) := |σ |− rank(Mσ ) with rank(Mσ ) = max{|A| | A ∈ I and A⊂ σ}, i.e. the
restriction of rank(M) to the subsets of σ .

Let us consider an m× n matrix A in Fq whose columns are indexed by E =
{1, . . . ,n} and take I to be the collection of subsets J of E for which the column
vectors

{
A j | j ∈ J

}
are linearly independent over Fq. Then (E, I) defines a matroid

denoted by M[A]. A matroid M = (E, I) is Fq-representable if it is isomorphic to
M[A] for some A ∈ Fm×n

q . Then the matrix A is called the representation matrix of
M. The following well known results describes the relation between the colleciton
of all cycles of a matroid M and its representation matrix.

Proposition 1 Let M = (E, I) be a Fq-representable matroid. Then C (M) is the
null space of a representation matrix of M. Furthermore, the dimension of C (M)
is |E|− rank(M).

Let ∆ be a simplicial complex on the finite ground set E. Let K be a field and
let x be the indeterminates x = {xe | e ∈ E}. The Stanley-Reisner ideal of ∆ is, by
definition,

I∆ = 〈xσ | σ /∈ ∆〉
The Stanley-Reisner ring of I∆, denoted by R∆, is defined to be the quotient

ring R∆ = K[x]
I∆

. This ring has a minimal free resolution as NE-graded module:

0 ←− R∆ ←− P0 ←− P1 ←− ·· · ←− Pl ←− 0

where each Pi is given by Pi =
⊕

α∈NE K[x](−α)βi,α . We write βi,α for the
NE-graded Betti Numbers of ∆.

1.1 Matroids and Simplicial complex

A matroid M = (E, I) is a simplicial complex whose faces are the independent
sets. Thus, IM := 〈xσ | σ ∈ C 〉 where C is the set of all circuits of M. Define
Ni = {σ ∈ N | n(σ) = d}.

Theorem 1 ([2]Theorem 1) Let M be a matroid on the ground set E. Let σ ⊂ E.
Then, βi,σ 6= 0 if and only if σ is minimal in Ni.

Definition 2 Let M = (E, I) be a matroid, we define the generalized Hamming
weights of M to be di = min{|σ | | n(σ) = i}.

Corollary 1 Let M be a matroid on the ground set E. Then,

di = min{d | βi,d 6= 0 for all 1≤ i≤ |E|− rank(M)} .
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1.2 Matroids and linear codes

An [n,k]q linear code C is a k-dimensional subspace of Fn
q. We define a generator

matrix of C to be a k×n matrix G whose row vectors span C , while a parity check
matrix of C is an (n− k)×n matrix H whose null space is C .

Let us denote by dH(·, ·) and wH(·) the Hamming distance and the Hamming
weight on Fn

q, respectively. We write d for the minimum Hamming distance of
the code C , which is equal to its minimum weight. Thus, the error correcting
capability of C is t =

⌊d−1
2

⌋
where b·c is the greatest integer function. For every

codeword c ∈ C its support, supp(c), is defined as its support as a vector in Fn
q, i.e.

supp(c) = {i | ci 6= 0}. We will denote by MC the set of codewords of minimal
support of C .

A test-set TC for C is a set of codewords such that for every word y ∈ Fn
q,

either y belongs to the set of coset leaders, or there exists an element t ∈ TC such
that wH(y− t)< wH(y).

Definition 3 The rth generalized Hamming weight of C denoted by dr(C ) is the
smallest support of an r-dimensional subcode of C . That is,

dr(C ) = min{supp(D) | D⊆ C and rank(D) = r}

In [3] the authors associate a binomial ideal to an arbitrary linear code provided
by the rows of a generator matrix and the relations given by the additive table of
the defining field.

Let X denote n vector variables X1, . . . ,Xn such that each variable Xi can be
decomposed into q−1 components xi,1, . . . ,xi,q−1 with i = 1, . . . ,n. A monomial in
X is a product of the form:

Xu = Xu1
1 · · ·X

un
n =

(
xu1,1

1,1 · · ·x
u1,q−1
1,q−1

)
· · ·
(

xun,1
n,1 · · ·x

un,q−1
n,q−1

)
where u ∈ Zn(q−1)

≥0 . The total degree of Xu is the sum deg(Xu) = ∑
n
i=1 ∑

q−1
j=1 ui, j.

When u = (0, . . . ,0), note that Xu = 1. Then, the polynomial ring K[X] is the set
of all polynomials in X with coefficients in K.

Recall that the multiplicative group F∗q of nonzero elements of Fq is cyclic.
A generator of the cyclic group F∗q is called a primitive element of Fq, i.e. Fq

consist of 0 and all powers from 1 to q− 1 of that primitive element. Let α be
a primitive element of Fq. We define by RXi , the set of all the binomials on the
variables Xi associated to the relations given by the additive table of the field Fq =〈
α j | j = 1, . . . ,q−1

〉
∪{0}, i.e.

RXi =
{
{xi,uxi,v− xi,w | αu +αv = αw} ∪ {xi,uxi,v−1 | αu +αv = 0}

}
3



with i = 1, . . . ,n. Note that there are
(q

2

)
different binomials in RXi . We define RX

as the ideal generated by the union of all binomial ideals RXi , i.e. RX =
〈
∪n

i=1RXi

〉
We will use the following characteristic crossing functions. These applications

aim at describing a one-to-one correspondence between the finite field Fq with q
elements and the standard basis of Zq−1, denoted as Eq = {e1, . . . ,eq−z} where ei

is the unit vector with a 1 in the i-th coordinate and 0’s elsewhere.

∆ : Fq −→ Eq∪{0} ⊆ Zq−1 and ∇ : Eq∪{0} −→ Fq

1. The map ∆ replaces the element a = α i ∈ Fq by the vector ei and 0 ∈ Fq by
the zero vector 0 ∈ Zq−1.

2. The map ∇ recovers the element α j ∈ Fq from the unit vector e j and the zero
element 0 ∈ Fq from the zero vector 0 ∈ Zq−1.

These maps will be used with matrices and vectors acting coordinate-wise. Al-
though ∆ is not a linear function. Note that we have:

X∆a ·X∆b = X∆a+∆b = X∆(a+b) mod RX for all a,b ∈ Fn
q.

Let C be an [n,k]q linear code. We define the ideal associated to C as the
binomial ideal:

I(C ) =
〈{

X∆a−X∆b | a−b ∈ C
}〉
⊆K[X]

Given the rows of a generator matrix C , labelled by {w1, . . . ,wk} ⊆ Fn
q, we

define the following ideal:

I+(C ) =

〈 {
X∆(α jwi)−1

}
i=1,...,n

j=1,...q−1
∪ {RXi}i=1,...,n

〉
⊆K[X]

Theorem 2 [3][Theorem 2.3] I(C ) = I+(C )

Remark 1 In the binary case, given a generator matrix G∈Fk×n
2 of an [n,k]2-code

C and let label its rows by {w1, . . . ,wk} ⊆ Fn
2. We define the ideal associated to C

as the binomial ideal:

I+(C ) =
〈
{Xwi−1}i=1,...,k ∪

{
x2

i −1
}

i=1,...,n

〉
⊆K[X]

Now, let G = {g1, . . . ,gs} be the reduced Gröbner basis of the ideal I+(C ) with
respect to �, where we take � to be any degree compatible ordering on K[X] with
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X1 ≺ . . . ≺ Xn. By Lemma [3][Lemma 3.3] we know that all elements of G \RX
are in standard form, so for gi ∈ G \RX with i = 1, . . . ,s, we define

gi = X∆g+i −X∆g−i with X∆g+i � X∆g−i and g+i −g−i ∈ C .

Using [3][Proposition 4], we know that the set T =
{

g+i −g−i | i = 1, . . . ,s
}

is
a test-set for C .

Example 1 Consider the [6,3,2]2 binary code C defined by the following genera-
tor matrix:

G =

 1 0 0 0 0 1
0 1 1 0 1 0
0 0 0 1 1 1

 ∈ F3×6
2

Let us label the rows of G by w1 and w2. By the previous theorem, the ideal
associated to the linear code C may be defined as the following ideal:

I+(C ) =
〈
{Xwi−1}i=1,2 ∪ {RXi}i=1,...,6

〉
=

〈 
x1x6−1

x2x3x5−1
x4x5x6−1

 ∪
{

x2
i −1

}
i=1,...,6

〉

If we compute a reduced Gröbner basis G of I+(C ) we obtained a test-set consist-
ing of 4 codewords:

TC = {(1,0,0,0,0,1),(0,1,1,0,1,0),(0,1,1,1,1,0,1),(0,0,0,1,1,1)}

For fuller discussion of this algebraic structure see [4, 1] and the references therein.
The connection between linear codes and matroids will turn out to be funda-

mental for the development of the subsequent results. Thus, a brief review will be
provided here.

Given an m× n matrix H in Fq, then H can be seen not only as the repre-
sentation matrix of the Fq-representable matroid M[H] but also as a parity check
matrix of an [n,k]-code C . Furthermore, there exists a one to one correspondence
between Fq-representable matroids and linear codes, since for any H,H ′ ∈ Fm×n

q ,
M[H] = M[H ′] if an only if H and H ′ are parity check matrices of the same code
C . This association enables us to work with Fq-representable matroids and linear
codes as if they were the same object and thus we can conclude some properties of
linear codes using tools from matroid theory and vice-versa.
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2 Our Conjecture

Let M = (E, I) be a matroid and C be the set of all circuits of M. Consider T
a collection of cycles of M with the following property:

⋃
τ∈C τ =

⋃
τ∈T τ . We

define the ideal IT = 〈xσ | σ ∈T 〉.

Conjecture 1 Let β ′i,α the NE-graded betti number of IT , related with the minimal

free resolution of R = K[X ]
IT

as NE-graded module. Then, we have a similar result
as Theorem 1 and Corollary 1.

If we talk about linear codes, the conjecture allows us to compute the set of
generalized Hamming weight of a linear code C using a Test-set for C , in other
words, by computing a Grobner basis of the ideal associated to C .

Corollary 2 Let TC be a test-set for the linear code C . Consider the monomial
ideal: ITC

= 〈xσ | σ ∈TC 〉. Let β ′i,α the NE-graded betti numbers of ITC
. Then,

di(C ) = min
{

d | β ′i,d 6= 0
}

for 1≤ i≤ n− k

Example 2 Now we use the same code of Example 1. In this case the support
of a test-set TC is given by: T = {{2,3,5},{2,3,4,6},{4,5,6},{1,6}} i.e. we
consider the ideal: IT = 〈x2x3x5,x2x3x4x6,x4x5x6,x1x6〉 ⊆ K[x1, . . . ,x6]. We get
the Betti diagram

1 2 3
1 1
2 2 1
3 1 4 2

Thus β ′1,2, β ′2,4 and β ′3,6 are the minimal β ′i,d 6= 0 with i = 1,2,3. Or equivalently,
d1 = 2, d2 = 4 and d3 = 6.
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