22 research outputs found

    Genome sequence of Mesorhizobium mediterraneum strain R31, a nitrogen-fixing rhizobium used as an inoculant for chickpea in Argentina

    Get PDF
    Here, we report the complete genome sequence of Mesorhizobium mediterraneum R31, a rhizobial strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of 7.25 Mb, distributed into four circular replicons: a chromosome of 6.72 Mbp and three plasmids of 0.29, 0.17, and 0.07 Mbp.Instituto de Microbiología y Zoología Agrícola (IMYZA)Fil: Foresto, Emiliano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Instituto de Biotecnología Ambiental y Salud. Departamento de Biología Molecular; ArgentinaFil: Revale, Santiago. University of Oxford. Wellcome Centre for Human Genetics; Reino UnidoFil: Nievas, Fiorela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Instituto de Biotecnología Ambiental y Salud. Departamento de Biología Molecular; ArgentinaFil: Carezzano, María Evangelina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Instituto de Biotecnología Ambiental y Salud. Departamento de Biología Molecular; ArgentinaFil: Puente, Mariana Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Microbiología y Zoología Agrícola. Laboratorio de Bacterias Promotoras del Crecimiento Vegetal; ArgentinaFil: Alzari, Pedro. Université de Paris. Institut Pasteur. Unité de Microbiologie Structurale; FranciaFil: Martínez, Mariano. Université de Paris. Institut Pasteur. Unité de Microbiologie Structurale; FranciaFil: Ben-Assaya, Mathilde. Université de Paris. Institut Pasteur. Unité de Microbiologie Structurale; FranciaFil: Mornico, Damien. Institut Pasteur. Département Biologie Computationnelle. Hub de Bioinformatique et Biostatistique; FranciaFil: Santoro, Maricel. Max Planck for Chemical Ecology. Department of Biochemistry; FranciaFil: Martínez-Abarca, Francisco. CSIC. Estación Experimental Del Zaidín. Grupo de Ecología Genética de la Rizósfera; EspañaFil: Giordano, Walter. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET). Departamento de Biología Molecular; ArgentinaFil: Bogino, Pablo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET). Departamento de Biología Molecular; Argentin

    Complete Genome Sequence of Bradyrhizobium sp. Strain C-145, a Nitrogen-Fixing Rhizobacterium Used as a Peanut Inoculant in Argentina

    Get PDF
    We present the complete genome sequence of Bradyrhizobium sp. strain C-145, one of the most widely used nitrogen-fixing rhizobacteria for inoculating peanut crops in Argentina. The genome consists of 9.53 Mbp in a single circular chromosome and was determined using a hybrid long- and short-read assembly approach.Instituto de Microbiología y Zoología Agrícola (IMYZA)Fil: Nievas, Fiorela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Biología Molecular. Instituto de Biotecnología Ambiental y Salud; ArgentinaFil: Revale, Santiago. University of Oxford. Wellcome Centre for Human Genetics; Reino UnidoFil: Foresto, Emiliano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Biología Molecular. Instituto de Biotecnología Ambiental y Salud; ArgentinaFil: Cossovich, Sacha. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Biología Molecular. Instituto de Biotecnología Ambiental y Salud; ArgentinaFil: Puente, Mariana Laura. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Microbiología y Zoología Agrícola. Laboratorio de Bacterias Promotoras del Crecimiento Vegetal; ArgentinaFil: Alzari, Pedro. Université de Paris. Institut Pasteur. Unité de Microbiologie Structurale; FranciaFil: Martínez, Mariano. Université de Paris. Institut Pasteur. Unité de Microbiologie Structurale; FranciaFil: Ben-Assaya, Mathilde. Université de Paris. Institut Pasteur. Unité de Microbiologie Structurale; FranciaFil: Mornico, Damien. Institut Pasteur. Département Biologie Computationnelle. Hub de Bioinformatique et Biostatistique; FranciaFil: Santoro, Maricel. Max Planck for Chemical Ecology. Department of Biochemistry; FranciaFil: Martínez-Abarca, Francisco. Estación Experimental del Zaidín. Department of Plant and Soil Microbiology. Structure, Dynamics, and Function of Rhizobacterial Genomes; EspañaFil: Giordano, Walter. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Biología Molecular. Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET); ArgentinaFil: Bogino, Pablo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Biología Molecular. Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET); Argentin

    RNA Sequencing Reveals Widespread Transcription of Natural Antisense RNAs in Entamoeba Species.

    Get PDF
    Entamoeba is a genus of Amoebozoa that includes the intestine-colonizing pathogenic species Entamoeba histolytica. To understand the basis of gene regulation in E. histolytica from an evolutionary perspective, we have profiled the transcriptomes of its closely related species E. dispar, E. moshkovskii and E. invadens. Genome-wide identification of transcription start sites (TSS) and polyadenylation sites (PAS) revealed the similarities and differences of their gene regulatory sequences. In particular, we found the widespread initiation of antisense transcription from within the gene coding sequences is a common feature among all Entamoeba species. Interestingly, we observed the enrichment of antisense transcription in genes involved in several processes that are common to species infecting the human intestine, e.g., the metabolism of phospholipids. These results suggest a potentially conserved and compact gene regulatory system in Entamoeba

    Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Ralstonia solanacearum </it>species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in <it>R. solanacearum </it>and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats.</p> <p>Results</p> <p>The genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced <it>R. solanacearum </it>strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of <it>R. solanacearum</it>, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole.</p> <p>Conclusions</p> <p>Comparative analysis of genome sequences and gene content confirmed the differentiation of <it>R. solanacearum </it>species complex strains into four phylotypes. Genetic distances between strains, in conjunction with CGH analysis of a larger set of strains, revealed differences great enough to consider reclassification of the <it>R. solanacearum </it>species complex into three species. The data are still too fragmentary to link genomic classification and phenotypes, but these new genome sequences identify a pan-genome more representative of the diversity in the <it>R. solanancearum </it>species complex.</p

    Complete genome sequence of Mesorhizobium ciceri Strain R30, a Rhizobium used as a commercial inoculant for Chickpea in Argentina

    Get PDF
    We report the complete genome sequence of Mesorhizobium ciceri strain R30, a rhizobium strain recommended and used as a commercial inoculant for chickpea in Argentina. The genome consists of almost 7 Mb, distributed into two circular replicons: a chromosome of 6.49 Mb and a plasmid of 0.46 Mb.Fil: Foresto, Emiliano. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Revale, Santiago. University of Oxford; Reino UnidoFil: Primo, Emiliano David. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; ArgentinaFil: Nievas, Fiorela Lujan. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; ArgentinaFil: Carezzano, Maria Evangelina. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; ArgentinaFil: Puente, Mariana Laura. Instituto de Microbiología y Zoología Agrícola; ArgentinaFil: Alzari, Pedro. Institut Pasteur de Paris.; FranciaFil: Martinez, Mariano. Institut Pasteur de Paris.; FranciaFil: Mathilde Ben-Assaya. Institut Pasteur de Paris.; FranciaFil: Mornico, Damien. Institut Pasteur de Paris.; FranciaFil: Santoro, Valeria Maricel. Max Planck For Chemical Ecology,; Alemania. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martínez Abarca, Francisco. Estación Experimental del Zaidín; EspañaFil: Giordano, Walter Fabian. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; ArgentinaFil: Bogino, Pablo Cesar. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Instituto de Biotecnologia Ambiental y Salud. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Cordoba. Instituto de Biotecnologia Ambiental y Salud.; Argentin

    Chromosomal Position of Ribosomal Protein Genes Affects Long-Term Evolution of Vibrio cholerae

    No full text
    It is unclear how gene order within the chromosome influences genome evolution. Bacteria cluster transcription and translation genes close to the replication origin (oriC). In Vibrio cholerae, relocation of s10-spc-α locus (S10), the major locus of ribosomal protein genes, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction in growth rate, fitness, and infectivity. To test the long-term impact of this trait, we evolved 12 populations of V. cholerae strains bearing S10 at an oriC-proximal or an oriC-distal location for 1,000 generations. During the first 250 generations, positive selection was the main force driving mutation. After 1,000 generations, we observed more nonadaptative mutations and hypermutator genotypes. Populations fixed inactivating mutations at many genes linked to virulence: flagellum, chemotaxis, biofilm, and quorum sensing. Throughout the experiment, all populations increased their growth rates. However, those bearing S10 close to oriC remained the fittest, indicating that suppressor mutations cannot compensate for the genomic position of the main ribosomal protein locus. Selection and sequencing of the fastest-growing clones allowed us to characterize mutations inactivating, among other sites, flagellum master regulators. Reintroduction of these mutations into the wild-type context led to a ≈10% growth improvement. In conclusion, the genomic location of ribosomal protein genes conditions the evolutionary trajectory of V. cholerae. While genomic content is highly plastic in prokaryotes, gene order is an underestimated factor that conditions cellular physiology and evolution. A lack of suppression enables artificial gene relocation as a tool for genetic circuit reprogramming.Centre National de la Recherche Scientifique de Francia-UMR3525French National Research Agency-ANR-10-BLAN593 131301y ANR-14-CE10-0007International Centre for Genetic Engineering and Biotechnology (ICGEB)-CRP/ARG18-06_ECECOS-SUD France-Argentina Program-18ST06Gobierno francés-ANR-10-LABX-62-IBEIDAgencia Nacional de Promoción de la Investigación, Desarrollo Tecnológico y la Innovación de Argentina-PICT-2017-0424, PICT-2020-0521 y PICT-2018-047

    C3BI-pasteur-fr/CoreGeneBuilder

    No full text
    CoreGeneBuilder can be used to extract a core genome (or a persistent genome) from a given set of bacterial genomes

    Psychrobacter Pasteurii and Psychrobacter Piechaudii Sp. Nov., Two Novel Species Within the Genus Psychrobacter

    No full text
    International audienceSix Gram-negative, non-motile, non-spore-forming, non-pigmented, oxidase- and catalase-positive bacterial strains were deposited in 1972, in the Collection of the Institut Pasteur (CIP), Paris, France. The strains, previously identified as members of the genus Moraxella on the basis of their phenotypic and biochemical characteristics, were placed within the genus Psychrobacter based on the results from comparative 16S rRNA gene sequence studies. Their closest phylogenetic relatives were Psychrobacter sanguinis CIP 110993T, Psychrobacter phenylpyruvicus CIP 82.27T and Psychrobacter lutiphocae CIP 110018T. The DNA G+C contents were between 42.1 and 42.7 mol%. The predominant fatty acids were C18 : 1ω9c, C16 : 0, C12 : 0 3-OH, and C18 : 0. Average nucleotide identity between the six strains and their closest phylogenetic relatives, as well as their phenotypic characteristics, supported the assignment of these strains to two novel species within the genus Psychrobacter. The proposed names for these strains are Psychrobacter pasteurii sp. nov., for which the type strain is A1019T (=CIP 110853T=CECT 9184T), and Psychrobacter piechaudii sp. nov., for which the type strain is 1232T (=CIP110854T=CECT 9185T)
    corecore