65 research outputs found

    Supplementary material for the article: Ristivojević, P.; Morlock, G. E. High-Performance Thin-Layer Chromatography Combined with Pattern Recognition Techniques as Tool to Distinguish Thickening Agents. Food Hydrocolloids 2017, 64, 78–84. https://doi.org/10.1016/j.foodhyd.2016.10.005

    Get PDF
    Supplementary material for: [https://doi.org/10.1016/j.foodhyd.2016.10.005 ]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2371]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3217

    Bioactive profiles of edible vegetable oils determined using 10D hyphenated comprehensive high-performance thin-layer chromatography (HPTLC×HPTLC) with on-surface metabolism (nanoGIT) and planar bioassays

    Get PDF
    IntroductionVegetable oils rich in unsaturated fatty acids are assumed to be safe and even healthy for consumers though lipid compositions of foods vary naturally and are complex considering the wealth of minor compounds down to the trace level.MethodsThe developed comprehensive high-performance thin-layer chromatography (HPTLC×HPTLC) method including the on-surface metabolization (nanoGIT) and bioassay detection combined all steps on the same planar surface. The pancreatic lipolysis (intestinal phase) experiment and the subsequent analysis of the fatty acid composition including its effect-directed detection using a planar bioassay was performed without elaborate sample preparation or fractionation to ensure sample integrity. Thus, no sample part was lost, and the whole sample was studied on a single surface regarding all aspects. This made the methodology as well as technology miniaturized, lean, all-in-one, and very sustainable.Results and discussionTo prioritize important active compounds including their metabolism products in the complex oil samples, the nanoGIT method was used to examine the pancreatic lipolysis of nine different vegetable oils commonly used in the kitchen and food industry, e.g., canola oil, flaxseed oil, hemp oil, walnut oil, soybean oil, sunflower oil, olive oil, coconut oil, and palm oil. The digested oils revealed antibacterial and genotoxic effects, which were assigned to fatty acids and oxidized species via high-resolution tandem mass spectrometry (HRMS/MS). This finding reinforces the importance of adding powerful techniques to current analytical tools. The 10D hyphenated nanoGIT-HPTLC×HPTLC-Vis/FLD-bioassay-heart cut-RP-HPLC-DAD-HESI-HRMS/MS has the potential to detect any potential hazard due to digestion/metabolism, improving food safety and understanding on the impact of complex samples

    Supplementary data for the article: Ristivojević, P. M.; Morlock, G. E. Effect-Directed Classification of Biological, Biochemical and Chemical Profiles of 50 German Beers. Food Chemistry 2018, 260, 344–353. https://doi.org/10.1016/j.foodchem.2018.03.127

    Get PDF
    Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/331]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/2914]Supplementary material for: [https://doi.org/10.1016/j.foodchem.2018.03.127

    Supplementary material for the article: Ristivojević, P.; Morlock, G. E. High-Performance Thin-Layer Chromatography Combined with Pattern Recognition Techniques as Tool to Distinguish Thickening Agents. Food Hydrocolloids 2017, 64, 78–84. https://doi.org/10.1016/j.foodhyd.2016.10.005

    Get PDF
    Supplementary material for: [https://doi.org/10.1016/j.foodhyd.2016.10.005 ]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2371]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3217

    Effect-directed classification of biological, biochemical and chemical profiles of 50 German beers

    Get PDF
    Biological and biochemical fingerprints were investigated for the first time for the feasibility of effect-directed classification, and thus, to allow the choice of a distinct beer with regard to beneficial health effects. A high-performance thin-layer chromatography method was newly developed and combined with in situ effect-directed analysis for profiling 50 German beers for multipotent active compounds, and thus, their health-related potential. Discovered multipotent active zones were online eluted and characterized by high resolution mass spectrometry. For example, isoxanthohumol, iso-α-ad/n-humulone or its isomers, desdimethyl-octahydro-isocohumulone and ad/n-humulone were proven as antimicrobial compounds, isoxanthohumol as an acetylcholinesterase inhibitor, and isoxanthohumol and iso-α-ad/n-humulone or its isomers as radical scavengers. Investigating multivariate data analysis of effect-directed fingerprints for the first time, the pattern recognition and classification results showed the power of clustering non-alcoholic beers from other types of beer, or it showed the differentiation of dark and non-alcoholic beers. © 2018 Elsevier LtdThis is the peer-reviewed version of the following article: Ristivojević, P. M.; Morlock, G. E. Effect-Directed Classification of Biological, Biochemical and Chemical Profiles of 50 German Beers. Food Chemistry 2018, 260, 344–353. [https://doi.org/10.1016/j.foodchem.2018.03.127]Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/2915

    Evidence that Indo-Pacific bottlenose dolphins self-medicate with invertebrates in coral reefs

    Full text link
    Indo-Pacific bottlenose dolphins (Tursiops aduncus) have been observed queueing up in natural environments to rub particular body parts against selected corals (Rumphella aggregata, Sarcophyton sp.) and sponges (Ircinia sp.) in the Egyptian Northern Red Sea. It was hypothesized that the presence of bioactive metabolites accounts for this selective rubbing behavior. The three invertebrates preferentially accessed by the dolphins, collected and analyzed by hyphenated high-performance thin-layer chromatography contained seventeen active metabolites, providing evidence of potential self-medication. Repeated rubbing allows these active metabolites to come into contact with the skin of the dolphins, which in turn could help them achieve skin homeostasis and be useful for prophylaxis or auxiliary treatment against microbial infections. This interdisciplinary research in behavior, separation science, and effect-directed analysis highlighted the importance of particular invertebrates in coral reefs, the urgent need to protect coral reefs for dolphins and other species, and calls for further vertebrate-invertebrate interaction studies

    Essential Oils as Multicomponent Mixtures and Their Potential for Human Health and Well-Being

    Get PDF
    Essential oils (EOs) and their individual volatile organic constituents have been an inherent part of our civilization for thousands of years. They are widely used as fragrances in perfumes and cosmetics and contribute to a healthy diet, but also act as active ingredients of pharmaceutical products. Their antibacterial, antiviral, and anti-inflammatory properties have qualified EOs early on for both, the causal and symptomatic therapy of a number of diseases, but also for prevention. Obtained from natural, mostly plant materials, EOs constitute a typical example of a multicomponent mixture (more than one constituent substances, MOCS) with up to several hundreds of individual compounds, which in a sophisticated composition make up the property of a particular complete EO. The integrative use of EOs as MOCS will play a major role in human and veterinary medicine now and in the future and is already widely used in some cases, e.g., in aromatherapy for the treatment of psychosomatic complaints, for inhalation in the treatment of respiratory diseases, or topically administered to manage adverse skin diseases. The diversity of molecules with different functionalities exhibits a broad range of multiple physical and chemical properties, which are the base of their multi-target activity as opposed to single isolated compounds. Whether and how such a broad-spectrum effect is reflected in natural mixtures and which kind of pharmacological potential they provide will be considered in the context of ONE Health in more detail in this review

    Effect-Directed Profiling of Strawberry Varieties and Breeding Materials via Planar Chromatography and Chemometrics

    Get PDF
    Strawberries are an important fruit in the European diet because of their unique taste and high content of essential nutrients and bioactive compounds. The anthocyanins are known to be colorful phenolics in strawberries. In 17 samples of six strawberry cultivars produced in Serbia, i.e., the common varieties Alba, Asia, and Clery as well as promising breeding materials (11.29.11, 11.34.6, and 11.39.3), the anthocyanin profile as well as antimicrobial and antioxidative activity profiles were determined. All investigated extracts showed antioxidative and antibacterial activities against Gram-negative Aliivibrio fischeri. The responses were quite similar in number and intensity. The HPTLC-DPPH• scavenging assay and HPTLC-Aliivibrio fischeri bioassay coupled with high-resolution mass spectrometry identified pelargonidin-3-O-glucoside (Pg-3-glc) as the main anthocyanin and prominent antioxidative and antimicrobial compound in strawberries. The density functional theory calculations at the M06-2X/6-31+G(d,p) level showed that Pg-3-glc quenches free radicals via sequential proton loss electron transfer mechanism in water and in pentyl ethanoate, where the 5-OH group is the most reactive site for proton and hydrogen atom transfer. The results were confirmed via spectrophotometry. The highest total phenolic content was found in Clery and 11.39.3, while statistically significant differences between the genotypes regarding the antioxidant activity were not confirmed. Although very similar in the anthocyanin, antioxidative, and antimicrobial profile patterns, the strawberry genotypes were successfully classified using principal component analysis

    Essential Oils as Multicomponent Mixtures and Their Potential for Human Health and Well-Being

    Get PDF
    Essential oils (EOs) and their individual volatile organic constituents have been an inherent part of our civilization for thousands of years. They are widely used as fragrances in perfumes and cosmetics and contribute to a healthy diet, but also act as active ingredients of pharmaceutical products. Their antibacterial, antiviral, and anti-inflammatory properties have qualified EOs early on for both, the causal and symptomatic therapy of a number of diseases, but also for prevention. Obtained from natural, mostly plant materials, EOs constitute a typical example of a multicomponent mixture (more than one constituent substances, MOCS) with up to several hundreds of individual compounds, which in a sophisticated composition make up the property of a particular complete EO. The integrative use of EOs as MOCS will play a major role in human and veterinary medicine now and in the future and is already widely used in some cases, e.g. , in aromatherapy for the treatment of psychosomatic complaints, for inhalation in the treatment of respiratory diseases, or topically administered to manage adverse skin diseases. The diversity of molecules with different functionalities exhibits a broad range of multiple physical and chemical properties, which are the base of their multi-target activity as opposed to single isolated compounds. Whether and how such a broad-spectrum effect is reflected in natural mixtures and which kind of pharmacological potential they provide will be considered in the context of ONE Health in more detail in this review
    corecore