392 research outputs found

    Mantle wedge anisotropy in the Hikurangi subduction zone, central North Island, New Zealand

    Get PDF
    [1] The anisotropic characteristics of the Hikurangi subduction zone in central North Island, New Zealand are studied using shear-wave splitting measurements from 55 local earthquakes recorded on a 200 km profile of 19 stations. The eastern fore-arc shows trench-parallel fast directions and a low average delay time of 0.2 s. The source of anisotropy is confined to the upper 60 km and is likely to be deformation induced within the overriding Australian plate. Central western North Island shows N-S trending fast anisotropy which may signify the presence of a viscous blanket of mantle material being entrained by the absolute motion of the Australian plate. Between these regions a dramatic switch to extension-parallel fast directions and delay times of 0.35 s are seen across the back-arc in the Taupo Volcanic Zone (TVZ). These results suggest asthenospheric flow beneath the overriding plate with the olivine a-axes oriented in the extension direction down to a maximum depth of 100 km

    Quantum control of hybrid nuclear-electronic qubits

    Full text link
    Pulsed magnetic resonance is a wide-reaching technology allowing the quantum state of electronic and nuclear spins to be controlled on the timescale of nanoseconds and microseconds respectively. The time required to flip either dilute electronic or nuclear spins is orders of magnitude shorter than their decoherence times, leading to several schemes for quantum information processing with spin qubits. We investigate instead the novel regime where the eigenstates approximate 50:50 superpositions of the electronic and nuclear spin states forming "hybrid nuclear-electronic" qubits. Here we demonstrate quantum control of these states for the first time, using bismuth-doped silicon, in just 32 ns: this is orders of magnitude faster than previous experiments where pure nuclear states were used. The coherence times of our states are five orders of magnitude longer, reaching 4 ms, and are limited by the naturally-occurring 29Si nuclear spin impurities. There is quantitative agreement between our experiments and no-free-parameter analytical theory for the resonance positions, as well as their relative intensities and relative Rabi oscillation frequencies. In experiments where the slow manipulation of some of the qubits is the rate limiting step, quantum computations would benefit from faster operation in the hybrid regime.Comment: 20 pages, 8 figures, new data and simulation

    Sex-limited genome-wide linkage scan for body mass index in an unselected sample of 933 Australian twin families

    Get PDF
    Genes involved in pathways regulating body weight may operate differently in men and women. To determine whether sex-limited genes influence the obesity-related phenotype body mass index (BMI), we have conducted a general non-scalar sex-limited genome-wide linkage scan using variance components analysis in Mx (Neale, 2002). BMI measurements and genotypic data were available for 2053 Australian female and male adult twins and their siblings from 933 families. Clinical measures of BMI were available for 64.4% of these individuals, while only self-reported measures were available for the remaining participants. The mean age of participants was 39.0 years of age (SD 12.1 years). The use of a sex-limited linkage model identified areas on the genome where quantitative trait loci (QTL) effects differ between the sexes, particularly on chromosome 8 and 20, providing us with evidence that some of the genes responsible for BMI may have different effects in men and women. Our highest linkage peak was observed at 12q24 (-logp = 3.02), which was near the recommended threshold for suggestive linkage (-logp = 3.13). Previous studies have found evidence for a quantitative trait locus on 12q24 affecting BMI in a wide range of populations, and candidate genes for non-insulin-dependent diabetes mellitus, a consequence of obesity, have also been mapped to this region. We also identified many peaks near a -log p of 2 (threshold for replicating an existing finding) in many areas across the genome that are within regions previously identified by other studies, as well as in locations that harbor genes known to influence weight regulation

    The importance of the weak: Interaction modifiers in artificial spin ices

    Get PDF
    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics, and emergent magnetic properties, in e.g. artificial spin ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here we introduce a new approach: single interaction modifiers, using slave-mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane. We show that by placing these on the vertices of square artificial spin ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule obeying states in square artificial spin ice structures, enabling the exploration of thermal dynamics in a spin liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length-scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.Comment: 17 pages, including methods, 4 figures. Supplementary information contains 16 pages and 15 figure

    Controlling spin relaxation with a cavity

    Get PDF
    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the spontaneous emission rate can be strongly enhanced by placing the quantum system in a resonant cavity -an effect which has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, underpinning single-photon sources. Here we report the first application of these ideas to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity of high quality factor and small mode volume, we reach for the first time the regime where spontaneous emission constitutes the dominant spin relaxation mechanism. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing that energy relaxation can be engineered and controlled on-demand. Our results provide a novel and general way to initialise spin systems into their ground state, with applications in magnetic resonance and quantum information processing. They also demonstrate that, contrary to popular belief, the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point where quantum fluctuations have a dramatic effect on the spin dynamics; as such our work represents an important step towards the coherent magnetic coupling of individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl

    Spin Entanglement Witness for Quantum Gravity

    Get PDF
    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements

    Heisenberg pseudo-exchange and emergent anisotropies in field-driven pinwheel artificial spin ice

    Get PDF
    Rotating all islands in square artificial spin ice (ASI) uniformly about their centers gives rise to the recently reported pinwheel ASI. At angles around 45∘, the antiferromagnetic ordering changes to ferromagnetic and the magnetic configurations of the system exhibit near degeneracy, making it particularly sensitive to small perturbations. We investigate through micromagnetic modeling the influence of dipolar fields produced by physically extended islands in field-driven magnetization processes in pinwheel arrays and compare the results to hysteresis experiments performed in situ using Lorentz transmission electron microscopy. We find that magnetization end states induce a Heisenberg pseudoexchange interaction that governs both the interisland coupling and the resultant array reversal process. Symmetry reduction gives rise to anisotropies and array-corner mediated avalanche reversals through a cascade of nearest-neighbor (NN) islands. The symmetries of the anisotropy axes are related to those of the geometrical array but are misaligned to the array axes as a result of the correlated interactions between neighboring islands. The NN dipolar coupling is reduced by decreasing the island size and, using this property, we track the transition from the strongly coupled regime towards the pure point dipole one and observe modification of the ferromagnetic array reversal process. Our results shed light on important aspects of the interactions in pinwheel ASI and demonstrate a mechanism by which their properties may be tuned for use in a range of fundamental research and spintronic applications

    Superferromagnetism and Domain-Wall Topologies in Artificial “Pinwheel” Spin Ice

    Get PDF
    For over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems. Here, we use Fresnel imaging to study the reversal process in “pinwheel” artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate that a simple 45° rotation changes the magnetic ordering from antiferromagnetic to ferromagnetic, creating a superferromagnet which exhibits mesoscopic domain growth mediated by domain wall nucleation and coherent domain propagation. We observe several domain-wall configurations, most of which are direct analogues to those seen in continuous ferromagnetic films. However, charged walls also appear due to the geometric constraints of the system. Changing the orientation of the external magnetic field allows control of the nature of the spin reversal with the emergence of either one- or two-dimensional avalanches. This property of pinwheel ASI could be employed to tune devices based on magnetotransport phenomena such as Hall circuits

    Supracervical hysterectomy versus total abdominal hysterectomy: perceived effects on sexual function

    Get PDF
    BACKGROUND: Our investigation sought to compare changes in sexual function following supracervical hysterectomy (SCH) and total abdominal hysterectomy (TAH). METHODS: A retrospective chart review was performed to identify all patients who underwent supracervical hysterectomy or total abdominal hysterectomy at a tertiary care center. Patients who met criteria for participation were sent a one page confidential, anonymous questionnaire to assess sexual function experienced both pre- and postoperatively. A total of 69 patients in each group were eligible for participation. A multiple logistic regression model was used to analyze measured variables. RESULTS: Forty-eight percent (n = 33) of women undergoing a SCH returned the questionnaire, while 39% (n = 27) of those undergoing a TAH chose to participate. There were no significant demographic differences between the two groups. Patients who underwent TAH reported worse postoperative sexual outcome than SCH patients with respect to intercourse frequency, orgasm frequency and overall sexual satisfaction (P = 0.01, 0.03, and 0.03, respectively). Irrespective of type of hysterectomy, 35% of patients who underwent bilateral salpingoophorectomy (BSO) with hysterectomy experienced worse overall sexual satisfaction compared to 3% of patients who underwent hysterectomy alone (P = 0.02). CONCLUSIONS: Our data suggest that TAH patients experienced worse postoperative sexual function than SCH patients with respect to intercourse frequency and overall sexual satisfaction. Irrespective of type of hysterectomy, patients who underwent bilateral salpingoophorectomy experienced worse overall sexual satisfaction
    corecore