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The modification of geometry and interactions in two-dimensional magnetic

nanosystems has enabled a range of studies addressing the magnetic order1–6,

collective low-energy dynamics7,8, and emergent magnetic properties5,9,10, in e.g.

artificial spin ice structures. The common denominator of all these investigations

is the use of Ising-like mesospins as building blocks, in the form of elongated

magnetic islands. Here we introduce a new approach: single interaction mod-

ifiers, using slave-mesospins in the form of discs, within which the mesospin is

free to rotate in the disc plane11. We show that by placing these on the vertices

of square artificial spin ice arrays and varying their diameter, it is possible to

tailor the strength and the ratio of the interaction energies. We demonstrate

the existence of degenerate ice-rule obeying states in square artificial spin ice

structures, enabling the exploration of thermal dynamics in a spin liquid man-

ifold. Furthermore, we even observe the emergence of flux lattices on larger

length-scales, when the energy landscape of the vertices is reversed. The work

highlights the potential of a design strategy for two-dimensional magnetic nano-

architectures, through which mixed dimensionality of mesospins can be used to

promote thermally emergent mesoscale magnetic states.

Lithographic techniques can be used to fabricate magnetic nano-arrays, in which the in-

teraction between the elements can be chosen by e.g. the distance between the islands. This

approach has been used in a number of previous works, addressing both the order and dynam-

ics of magnetic nanostructures1–8,12. In the specific case of square artificial spin ice (SASI)

this approach has even enabled tailoring of the thermal dynamics and relaxation8,13–15, as

well as experimental realizations9 of the degenerate square-ice model16. The distance and

thereby the coupling strength for nearest and next-nearest neighbours are different in SASI

(d1 6= d2 (see Fig. 1)), resulting in the loss of degeneracy. As a consequence, the ice-rule

obeying vertices, with two islands pointing in - two islands pointing out, are split into two

groups (TI and TII) with different energies (EI < EII). One way to remedy this shortcoming

is to shift parts of the lattice in the third dimension9,17,18. An alternative way to modify the

energy landscape, is to introduce an interaction modifier, as illustrated in Fig. 1b. In these

modified SASI (mSASI) arrays, all islands have the same distance, or gap G, to the inter-

action modifier. While a height offset might seem as the obvious choice for manipulating

the coupling strengths between the islands, the use of interaction modifiers at the vertices
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Figure 1. Schematics of the SASI and mSASI lattices shown together with their

vertex types. a, Illustration of a SASI and b a mSASI lattice. Real space base vectors defining

the square lattice together with the base (red islands), are shown in a together with the discrete

lattice points (black dots). The lattice parameter α is defined as α = ||a1|| = ||a2||. The length

of the islands is l=450 nm and their width is w=150 nm. c, The four different vertex types with

their respective energies, E, and degeneracy, z. In TII and TIII vertices the XY-like spins of the

discs have a well defined direction due to the residual stray field. In TI and TIV vertices the XY

spins exhibit weak fourfold degeneracy (in the collinear approximation11).

of artificial spin ice structures is not only lithographically much easier to obtain, but also

opens up completely new avenues for tailoring their energy landscapes. Instead of having a

system consisting of only one type of islands, we use two sub-systems with widely different

shape anisotropies and activation energies.

The elongated islands used in artificial spin ice structures can be described as Ising-like

mesospins, while the discs we use here to modify their interaction, can be described to a
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first approximation as XY-like11. The difference in their activation energies will give rise to

a master-slave relation, where the vertex state dictates the direction of the XY-mesospin.

The mutual interaction of the Ising and the XY spins yields the emergent magnetic order.

For TII and TIII vertices the magnetization direction of the enclosed discs is enforced by

the effective dipole moment of the vertex but the magnetic state of the disc for TI and TIV

vertices are fourfold degenerate (see Supplementary Fig. 14). By fabricating the islands

from a material with an ordering temperature at or below room temperature8,12,13 allows us

to access all the relevant parts of the phase diagram: from the paramagnetic state of the

material to the ordering of the vertices as described below.

We have studied in total 15 different SASI arrays with three different lattice parameters

α=[660,720,800] nm patterned on δ-doped Pd(Fe) thin films. Each array has five differ-

ent disc sizes, D=[0,120,130,150,180] nm for α=660 nm and D=[0,130,150,180,200] nm for

α=[720,800] nm. All arrays have the same elongated island size of 450 × 150 nm2. Pho-

toemission Electron Microscopy (PEEM) based upon X-ray Magnetic Circular Dichroism

(XMCD) was utilised for determining the magnetic state of the elements. Representative

results from the near-perturbation free measurements are shown in Fig. 2a.

The degeneracy normalized vertex populations, derived from the PEEM-XMCD images,

as a function of disc diameter for the α=660 nm array are presented in Fig. 2b (see Sup-

plementary Fig. 1 for full data set). The sample is thermally active and upon cooling will

pass the blocking temperatures of the islands and the discs. This implies that the frozen

states observed at 120 K represent configurations which were thermally arrested at higher

temperatures8. In the absence of a central disc, a large number of excitations are observed

as the system approaches the antiferromagnetically-ordered ground state of SASI3. The

high degree of disorder is caused by the relatively small coupling strength between the Ising

islands.

The presence of the discs dramatically changes the overall behavior as seen in Fig. 2b,

passing from a TI dominated spin texture in the absence of discs (D=0) to a TII dominated

configuration when discs with a diameter of 180 nm are present. This implies an inversion

in the energy levels for EI and EII, at a diameter around 150 nm, corresponding to a gap

of 30 nm (see Supplementary Fig. 13 for micro-magnetic simulations). We also note that

the populations of TIII and TIV appear to be only weakly affected by the presence of the

discs, within the range of diameters studied here (see Fig. 2). Therefore the corresponding
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Figure 2. Real space magnetic imaging and vertex populations. a, Representative SEM

and PEEM-XMCD images (α=660 nm, D=130 nm and G=40). X-ray direction and color contrast

is indicated by the arrows. b, Degeneracy normalized vertex populations PD as a function of disc

diameter D. The horizontal coloured stripes refer to the populations for D=0 and serve as a guide

to the eye along with the dashed lines, highlighting the vertex population changes while varying

D. As the diameter D increases, the population ratios between TI and TII are reversed, pointing

towards a transition in vertex energies from EI < EII to EI > EII, where D=150 nm is closest

realization to EI=EII condition. EIV > EIII > (EI, EII) holds for all lattices explored. c, Spatial

representation, in the form of vertex maps, of the data from b for D=0, D=150, and D=180.

The color coding represents the four different types of vertices, described in Fig. 1c, using the

colorscheme from Fig. 2b.

vertex energies remain close to constant relative to EI and EII. For D=150 nm, (G= 30 nm),

the number of TI and TII vertices are similar, which is expected in the compensated regime
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where all ice-rule obeying vertex configuration are equal in energy and therefore degenerate.

The spatial distribution of the vertices is shown in Fig. 2c. An average domain size of 3.2

TI vertices is obtained from the analysis for D=0, with the largest domain composed of 37

TI vertices. With the discs present, the domain size of TI vertices is found to decrease with

increasing disc diameter, reaching 1.4 for D=180 nm. At this diameter, the TII vertices are

predominant, with an average domain size of 11.7 vertices and the largest domain observed

consisting of 191 vertices. The magnetic correlation between the Ising mesospins decays

rapidly, favouring the use of analysis tools which are not tied to pre-identified correlations.

For example, direct entropy density estimates, as suggested by Lammert et al.19, can be

used to obtain the upper bound for the real entropy in the arrays.

An even more comprehensive way to study the emergent magnetic order is the compu-

tation of the magnetic spin structure factor9,10. Here we utilize the real space lattice and

related vectors defined and presented in Fig. 1b, when calculating the magnetic spin struc-

ture factor from the real space PEEM-XMCD images. The result for α = 660 nm D=0 nm,

as well as the reciprocal lattice, related vectors and high symmetry points are presented in

Fig. 3a. The position of the Bragg peaks at the M points of the first Brillouin zone ([±1
2
,±1

2
]

reciprocal lattice units, r.l.u., or [1
2
b1,

1
2
b2]) stems from domains of TI vertices, resulting in a

magnetic structure with a periodicity twice as large as that of the lattice. The width of the

peaks arises from the abundance of defects in the form of TIII and TIV vertices, resulting in

short correlation lengths. The thermalized system is free from kinetic constraints imposed

by external fields, as e.g. observed in athermal systems9, yielding highly symmetric Bragg

peaks. When the diameter of the discs is increased, the Bragg peaks diminish and diffuse

scattering becomes more prominent (see Supplementary Fig. 4 for full data set). At D=150

nm (G=30 nm) which corresponds to the nearly compensated array, the signal is diffuse yet

structured as seen in Fig. 3b. This map resembles the characteristic intensity distribution

for a square-ice model spin liquid, associated to an emergent Coulomb phase with slow de-

caying spin correlations20,21. In such cases, the spin structure factor exhibits characteristic

intensity features at specific reciprocal lattice points, so called ‘pinch points’22, appearing

at [±1,±1] r.l.u, where the intensity exhibits a singularity9. The intensities at the pinch

points of Fig. 3b exhibit a weak divergence due to finite size effects and the amount of ex-

citations in the arrays. Expressing the intensity distribution around a pinch point in polar

coordinates of {q,θ} we can identify a clear dependence on θ, but not on q, in contrast with
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Figure 3. Magnetic spin structure factor and autocorrelation. a, The magnetic spin

structure factor for the α=660 nm array, D=0 nm and b, the magnetic spin structure factor for

D=150 nm, both frozen-in spin states. The color scale indicates the intensity for every point (qx,qy),

while b1 and b2 in a are the reciprocal lattice vectors constructed from the real space lattice vectors

in Fig. 1b. The first Brillouin zone, dotted line, is shown together with a portion of the reciprocal

lattice, white dots. The Γ point of the first Brillouin zone is also marked. c Time-temperature

average of 7 magnetic spin structure factors exploring the spin-liquid manifold. d Autocorrelation

of the spin states as a function of time and temperature. The autocorrelation reveals how far from

the original spin state the array has evolved, an indication of how much of the spin liquid manifold

has been explored.
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the expected intensity distribution for an ideal paramagnet, which is independent of both θ

and q23.

Direct observation of the magnetic microstates enables investigations of exotic magnetic

phases, such as the spin liquid state24. Furthermore, the rate of transformation in the spin

liquid, for a given temperature and time interval, can be directly determined using the

Edwards-Anderson order parameter25. In order to probe the thermal dynamics in the spin

liquid manifold, we use a heating protocol as described in Methods. Upon heating, spins

will start to reverse, changing the overall magnetic structure. The time and temperature

averaged spin structure factor for the nearly compensated array, computed from seven dif-

ferent time-temperature steps, is shown in Fig. 3c. Fig. 3d illustrates the changes in the

Edwards-Anderson order parameter25 which we use to determine how far from the original

spin configuration the array has evolved. It has the form of an autocorrelation between the

measurement at t=t0 and every subsequent time-temperature step (see Methods for further

details) as shown in Fig. 3d. Between t=t0 and t=tfinal close to 20 % of all spins have

reversed, while the array still remains in the spin liquid-like state. The evolution of the sys-

tem presented in Fig. 3d depicts changes in the spin liquid manifold, differing significantly

from other dynamics studies targeting thermal relaxation processes7,13,15. Here the magnetic

structure does not relax, instead the vertex populations and domain sizes remain constant.

The activities are similar for the TI, TII, and TIII vertices, while TIV vertices are compa-

rably more active (see Supplementary Fig. 11). This approach enables the investigation of

mesospin dynamics in magnetic frustrated materials, thereby allowing to shed light on the

related glassy dynamics and monitor the evolution of liquid-like spin configurations in time

and temperature26.

At a disc diameter of D=180 nm, the TII population increases to almost 60 %, while

the TI population decreases below 30 % with vertex energies EII < EI < EIII < EIV.

The resulting spin structure factor looks completely different as illustrated in Fig. 4a (see

also the PhD thesis of Y. Perrin for a discusion concerning an athermal system27). When

considering the effective dipole moment associated with the TII vertices, it becomes clear

that their abundance can give rise to an emergent flux lattice on the next length scale,

dictating the magnetic order of the spin system. In more detail, we experimentally identify

four different types of flux lattices (see Supplementary Fig. 10): An emergent TI-like tiling of

TII vertices (see Fig. 4c), vortex/anti-vortex pairs (see Fig. 4d), and ferromagnetic states,
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Figure 4. Emergent flux lattice ordering. a, Magnetic spin structure factor of the α=660

D=180 array. b, Summation of the magnetic structure factor for spin state c along with spin states

d, e and its π/2 rotation, and f and its π/2 rotation. The magnetic flux from TII vertices is drawn

with blue arrows. g cut along qx=0 for both the experimental and simulated maps. The intensity

of the peaks in the simulated map are scaled to match the experimental data.

forming both a non-collinear herringbone structure (Fig. 4e) or collinear ferromagnetic

domains (Fig. 4f). The flux lattice with the lowest energy, as determined by micro-magnetic

calculations, is the emergent TI-like tilling, whereas the vortex structure has only somewhat

higher energy. Both the ferromagnetic states invoke the presence of a net moment, implying
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a higher energy cost and being more unfavourable, as compared to the flux closure states.

The energy differences ∆E between the ground state and the emergent states, expressed as

∆E/kB, are 5 K, 58 K, and 123 K for the vortex-antivortex state, the herringbone state, and

the polarized state respectively (calculated using micro-magnetic simulations). The energy

difference between the TI-tiling and the collinear flux state is therefore almost 25 times

larger than the difference between the TI-tiling and the vortex-antivortex state. In order to

get an estimate of the magnetic ordering of the array we have calculated the spin structure

factor maps for the configurations depicted in Fig. 4c-f and summed all four results into one

map in Fig. 4b (see Methods for details). As seen in Fig. 4b, there is a strong resemblance

between the experimental and the simulated results. To further elaborate on this we make

a cut along qx=0 for both the experimental and the calculated result shown in Fig. 4a and

b. The weighted sum obtained from the four textures described in Fig. 4c-f overlap to a

great extent with the experimental data. With long-range interactions present28, the state

with the lowest energy in the emergent flux lattice is, as already mentioned, the two fold

degenerate TI-tiling. This state is from a symmetry perspective, identical to the ground

state in regular SASI, albeit at a different length scale. At finite temperatures we observe

the traces of competing states, with small energy differences, as well as frozen-in higher

energy states. In the scenario of an array with even more dominant populations of TII

vertices, which implies even larger energy gaps between TII vertices and other vertex types,

the TII abundance would make the features we observe even more pronounced. This could

provide a pathway towards examining systems where order is dominated by the emergent

flux lattices.

We have presented a generic solution to continuously alter the effective coupling between

mesoscopically-sized islands of a ferromagnetic material in a fully planar geometry. This

approach can be utilized to engineer the energy landscape of two-dimensional nanomagnetic

systems in a completely new way, employing nanomagnetic objects of distinctively differ-

ent mesospin dimensionality. In our example using nanosized magnetic discs, we tailor the

energy landscape of arrays, recovering the degeneracy in SASI and also promoting emer-

gent magnetic order of the Ising mesospins. This approach opens thereby new routes for

investigations of ordered and frustrated artificial systems. Here we have only focused on

the final state of one of the subsystems in the sample (elongated Ising-like islands), treating

the discs as interaction modifiers. One can also envisage structures where the situation is
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reversed and the collective magnetic structure of the discs dominates the ordering, leaving

the Ising mesospins in the role of the modifier. This synergy and cooperative behaviour

therefore provides a route for designing new types of magnetic metamaterials with rich

magnetic phase diagrams and thermodynamics. The calculated spin structure factors, ob-

tained from the real space microscopy results, demonstrate the plausibility of using magnetic

scattering29,30, providing new insights on emergent mesoscale magnetic structures driven by

collective dynamics31.
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B. Hjörvarsson, and V. Kapaklis, Thermally induced magnetic relaxation in square artificial

spin ice, Scientific Reports 6, 37097 (2016).

[14] S. A. Morley, D. Alba Venero, J. M. Porro, S. T. Riley, A. Stein, P. Steadman, R. L. Stamps,

S. Langridge, and C. H. Marrows, Vogel-Fulcher-Tammann freezing of a thermally fluctuating

artificial spin ice probed by x-ray photon correlation spectroscopy, Physical Review B 95,

104422 (2017).

[15] A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V. Chopdekar, M. Wyss, J. Perron,

A. Scholl, F. Nolting, and L. J. Heyderman, Direct Observation of Thermal Relaxation in

Artificial Spin Ice, Physical Review Letters 111, 057204 (2013).

[16] E. H. Lieb, Residual Entropy of Square Ice, Phys. Rev. 162, 162–172 (1967).
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METHODS

Sample manufacturing

The arrays were patterned from δ-doped Pd(Fe)32 thin films grown on MgO substrates

with a 1,5 nm thick V seeding layer using a UHV sputter system. δ-doped Pd(Fe) is a

magnetic trilayer system, in our case consisting of Pd(40 nm)/Fe(2.0 monolayers)/Pd(2

nm). The magnetic nano-structures were produced by post-patterning the Pd(Fe) δ-doped

thin films using e-beam lithography at the Center for Functional Nanomaterials (CFN),

Brookhaven National Laboratory in Upton New York. The physical dimension of each array

is 200 × 200 µm2 and were all patterned on the same substrate ensuring near-identical

conditions for all arrays during the measurements.
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PEEM-XMCD

The Photoemission Electron Microscopy (PEEM) measurements employing the X-ray

Magnetic Circular Dichroism (XMCD) technique were carried out at the 11.0.1 PEEM3

beamline at the Advanced Light Source, CA, USA. The imaging of the frozen states was

performed at a temperature of 120 K using the L3 edge of Fe (708.6 eV). For each array

multiple XMCD images where acquired and merged together revealing the state of several

thousands of islands. Due to the size of the discs it is difficult to observe their magnetic

orientation, however some of them can be observed in the PEEM-XMCD images (see Sup-

plementary Fig. 9). At 120 K all mesospins are frozen with an average fluctuation rate

lower than the time-scale of the whole experiment, as such no mesospin fluctuations were

observed at 120 K. This also have the implication that changing the acquisition protocol in

this frozen regime do not affect the observed state.

Magnetic spin structure factor

The magnetic spin structure factor is defined analogous with neutron scattering experi-

ments where spin correlations perpendicular to the scattering vector is measured. We start

by defining a perpendicular spin component S⊥ of spin S:

S⊥ = S− (q̂ · S)q̂ (1)

where q̂ is the unit scattering vector:

q̂ =
q

‖q‖
For every q = (qx, qy) the intensity I is given by:

I(q) =
1

N

N∑

(i,j=1)

S⊥i · S⊥j exp(iq · (ri − rj)) (2)

Which we can write as:

I(q) =
1

N

(
N∑

i=1

S⊥i exp(iqri)

)
·
(

N∑

j=1

S⊥j exp(−iqrj)

)
(3)

Expanding yields:

I(q) =
1

N

(
N∑

i=1

S⊥i cos(q · ri) + i

N∑

i=1

S⊥i sin(q · ri)
)
·
(

N∑

j=1

S⊥j cos(q · rj)− i
N∑

j=1

S⊥j sin(q · rj)
)

(4)
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Recognizing that i and j sums up over the same spins and defining A =
∑N

i=1 S⊥i cos(q · ri)
and B =

∑N
i=1 S⊥i sin(q · ri) we can simplify the equation such that:

I(q) =
1

N
(A + iB) · (A− iB) =

1

N

(
A2 + B2

)
(5)

I is now a real quantity which we calculate for the interval (qx, qy)=[-3,-3]-[3,3] r.l.u. in

601x601 steps.

Heating protocol

The sample was cooled from its paramagnetic state to 170 K where the spin flip time is

in the order of hours. At this temperature the t0 spin state was recorded. The temperature

was subsequently raised in steps of 10 K up to 200 K with two measurement points recorded

at each temperature. The nominal acquisition time was kept the same for all measurements

with the shortest acquisition time being 470 s and the longest 483 s. The starting time t for

all measurements relative to t0 were 1047 s, 1531 s, 2371 s,2864 s, 3753 s, and 4242 s.

Autocorrelation

The autocorrelation is calculated in a way so that any change in the spin system at

t > t0 is tracked cumulatively towards tfinal. For every given time-temperature (t,T) step

the autocorrelation is given by Q(t,T) = 1
N

∑N
j=1 Sj,t0,Ti

· Sj,t,T where t0 is the inital time,

Ti is the initial temperature, and N is the number of islands with an assignable magnetic

vector. Only islands visible in both time-temperature steps are taken into account (see

Supplementary Fig. 8).

Composite spin structure map

In order to obtain insight on the overall spin structure of the α=660, D=180 array, see

Fig. 4a, we calculated the individual spin structure factor of the states illustrated in 4 c-f

in the following way. We used an array containing 144 islands, with 64 vertices, all TII.

Concerning the structure illustrated in Fig. 4d this implies that the spin structure factor is

calculated from 5 vortices and 4 antivortices. Each of the spin structure factors are scaled in

intensity (1/20, 1/2, 1/9, 1/20) in order to match the experimental data illustrated in Fig.
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4f. The weighted sum of the four spin structure factor maps is shown in Fig. 4b The data

points are binned in series of three, using a moving average, in the bar diagram in Fig. 4g.

Micromagnetic simulations

The micro-magnetic simulations were performed using the GPU-accelerated MUMAX3

software33. The calculations are all 0 K calculations with a saturation magnetization of

Ms=560320 A/m8 and an exchange stiffness of 6.5×10−12. The thickness of the magnetic

layers was assumed to be 1 nm. The calculation of the energies for the states illustrated in

Fig. 4 where performed using 32 islands and 16 discs, using periodic boundaries. Initially,

the magnetic order was pre-defined in all elements. The system was thereafter relaxed, a

process where MUMAX3 minimizes the energy, allowing for divergence of the magnetization

within the elements.
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Supplementary Figure 1. Degeneracy corrected and normalized vertex populations for α = 660

nm a, α = 720 nm b, and α = 800 nm c. Vertical dashed lines indicate the intersection between TI

and TII vertices drawing straight lines betweeen the data points. The horizontal coloured stripes

refer to the populations for D=0 and serve as a guide to the eye along with the dotted lines,

highlighting the vertex population changes while varying D. All three groups with different lattice

parameters undergo a transition from a majority of TI vertices to a majority of TII vertices with

an increase in disc diameter. The increase in lattice parameter decreases the coupling strength

between the interacting elements evident from the increase of charges for the α = 720 nm and the

α = 800 nm lattices.
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Supplementary Figure 2. Vertex maps for all measured arrays. The lattice parameter, α is

defined for each vertical line, the diameter,D, is defined for every lattice horizontally.
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Supplementary Figure 4. Magnetic spin structure factor for all meausured arrays. The white

line in α = 660 nm D=150 nm illustrates the cut in reciprocal space where from the pinch point

data in Supplementary Fig. 5 a is taken.
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Supplementary Figure 5. a Intensity profile of the α = 660 nm D=150 lattice going from

[3/4, 5/4] to [5/4, 3/4] r.l.u passing through the pinch point at [1,1] r.l.u in reciprocal space, see

Supplementary figure 4. b Evolution of peak intensity values at the pinch points while increasing

the disc diameter. Peak values are averaged over all four positions [±1,±1] r.l.u.
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Supplementary Figure 6. a Computed magnetic spin structure factor averaged over 800 decorre-

lated spin configurations satisfying the ice rule. In order to calculate a theoretical spin map for a

fully compensated lattice we start with a spin configuration containing N=882 spins using periodic

boundary conditions polarized diagonally with respect to the major axis of the square lattice and

employ the standard loop algorithm1–3. To fully decorrelate the spin configurations 4N loops are

flipped. For each loop the first spin is choosen at random in the lattice, the next spin is chosen

from one of the six neighbors at random with the condition that the spins in the loop must align

ferromagnetically after the spin flip. As soon as the loop is closed all trailing spins not contained

in the loop are flipped back and a new loop is started. The loops can either be closed, contained

within the lattice, or open, wrapped around the lattice. In this way all vertices will obey the ice

rule and only the ice rule manifold will be explored. The calculated magnetic spin structure factor

map is averaged over 800 decorrelated spin configurations. b Intensity profile over [3/4, 5/4] to

[5/4, 3/4] r.l.u passing through the pinch point at [1,1] r.l.u., as indicated by the white line in a.

7



a b c

d e f

g

qx [r.l.u]

q y
[r.

l.u
]

1

2

3

4

5

6

7

qx [r.l.u]

q y
[r.

l.u
]

1

2

3

4

5

6

7

qx [r.l.u]

q y
[r.

l.u
]

1

2

3

4

5

6

7

qx [r.l.u]

q y
[r.

l.u
]

1

2

3

4

5

6

qx [r.l.u]

q y
[r.

l.u
]

1

2

3

4

5

6

7

qx [r.l.u]

q y
[r.

l.u
]

1

2

3

4

5

6

7

8

9

qx [r.l.u]

q y
[r.

l.u
]

1

2

3

4

5

6

7

8

9

10

11

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Supplementary Figure 7. Computed magnetic spin structure factor for the time-temperature

series. a corresponds to 170 K t=t0, b 180K t=1047 s, c 180 K t=1531 s, d 190 K t=2371 s, e 190

K t=2864 s, f 200 K t=3753 s, g 200 K t=4242 s.
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Supplementary Figure 8. Population of islands with a distinct magnetization direction, PI, for

each time-temperature step. An island spending equal, or near equal, amount of time in each of

it’s two possible directions during the measurement will not show any magnetic contrast.
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Supplementary Figure 9. PEEM-XMCD image of the α = 660 nm D=150 nm lattice. The islands

orientation is rotated 45 degrees with respect to the image shown in Fig. 2 in the article. The image

is merged from 12 individual PEEM-XMCD images. The quality of the image is representative for

all lattices measured.
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Supplementary Figure 10. Magnetic flux map of the α = 660 nm D=180 nm lattice with residual

flux from TII, blue, and TIII, yellow, vertices. The map is rotated 45 degrees in comparison to the

schematic maps in Fig. 4 in the article. Different TII flux ordering are marked out. Ferromagnetic

order, yellow box, herringbone structure, green box, TI tiling, blue box and larger scale vortex, red

box.
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Supplementary Figure 11. a, Evolution of the degeneracy corrected, normalized, population dur-

ing the time-temperature sequence. The populations remains almost constant for the measurement

interval. b, Evolution of domain sizes for the different vertex types during the time-temperature

sequence. The slight decrease in domain sizes is attributed to the decreasing value of islands with

a distinct direction of magnetization, see Supplementary Figure 8. c, Normalized cummulative

vertex activity, counted as all vertex transitions between all time-temperature steps for the vertex

types individually, normalized to each vertex type count for all time-temperature steps.
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Supplementary Figure 12. Energy comparison between the different all TII states, see Fig. 4,

calculated using MUMAX3 as defined in the paper.
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Supplementary Figure 13. Energy comparison between TI and TII vertices for α=660 nm with

increasing disc diameter calculated using MUMAX3. The crossover in energy happens at smaller

disc diameters then what is suggested by the population inversion see Supplementary Figure 1. It

is not feasible for a micromagnetic simulation to capture all the physics contained in a thermal

system and it is therefore not surprising that the 0 K simulation do not quantitatively match the

experiment to full extent.
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Supplementary Figure 14. Energy for TI and TII vertices in a purely collinear XY-spin approx-

imation for the disc’s magnetization while rotating the magnetization of the disc. The energies

are normalized to the maximum energy of the TII vertex. The energy minima for the disc in TI

vertices is four fold (the same is true for TIV) vertices). For TII and TIII vertices (not shown) there

is one energy minima along the combined flux of the islands. Compare to Fig. 1 in the paper. ϕ=0

rad lies along the long axis of one island.
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Supplementary Figure 15. Computed magnetic spin structure factor for the different all TII

states, see Fig. 4 in the paper. a TI-tiling, b vortex-antivortex, c herringbone structure, and d is

the polarized state. The points at [qx, qy]=[n±0.25,0] or [qx, qy]=[0,n±0.25], where n is an integer,

are unique to the vortex-antivortex state, b. Peaks at integer values are shared between c and d.

Points at half integer values are shared between a and c.
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