91 research outputs found

    A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing

    Full text link
    We present a see-saw A4A_4 model for Tri-Bimaximal mixing which is based on a very economical flavour symmetry and field content and still possesses all the good features of A4A_4 models. In particular the charged lepton mass hierarchies are determined by the A4×Z4A_4\times Z_4 flavour symmetry itself without invoking a Froggatt-Nielsen U(1) symmetry. Tri-Bimaximal mixing is exact in leading order while all the mixing angles receive corrections of the same order in next-to-the-leading approximation. As a consequence the predicted value of θ13\theta_{13} is within the sensitivity of the experiments which will take data in the near future. The light neutrino spectrum, typical of A4A_4 see-saw models, with its phenomenological implications, also including leptoproduction, is studied in detail.Comment: 20 pages, 2 figure

    A See-Saw S4S_4 model for fermion masses and mixings

    Full text link
    We present a supersymmetric see-saw S4S_4 model giving rise to the most general neutrino mass matrix compatible with Tri-Bimaximal mixing. We adopt the S4×Z5S_4\times Z_5 flavour symmetry, broken by suitable vacuum expectation values of a small number of flavon fields. We show that the vacuum alignment is a natural solution of the most general superpotential allowed by the flavour symmetry, without introducing any soft breaking terms. In the charged lepton sector, mass hierarchies are controlled by the spontaneous breaking of the flavour symmetry caused by the vevs of one doublet and one triplet flavon fields instead of using the Froggatt-Nielsen U(1) mechanism. The next to leading order corrections to both charged lepton mass matrix and flavon vevs generate corrections to the mixing angles as large as O(λC2){\cal O}(\lambda_C^2). Applied to the quark sector, the symmetry group S4×Z5S_4\times Z_5 can give a leading order VCKMV_{CKM} proportional to the identity as well as a matrix with O(1){\cal O}(1) coefficients in the Cabibbo 2×22\times 2 submatrix. Higher order corrections produce non vanishing entries in the other VCKMV_{CKM} entries which are generically of O(λC2){\cal O}(\lambda_C^2).Comment: 30 pages, 3 figures, minor changes to match the published versio

    Quark-lepton mass relation and CKM mixing in an A(4) extension of the minimal supersymmetric standard model

    Get PDF
    An interesting mass relation between down-type quarks and charged leptons has been recently predicted within a supersymmetric SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) model based on the A(4) flavor symmetry. Here we propose a simple extension which provides an adequate full description of the quark sector. By adding a pair of vectorlike up quarks, we show how the CKM entries V-ub, V-cb, V-td and V-ts arise from deviations of the unitarity. We perform an analysis including the most relevant observables in the quark sector, such as oscillations and rare decays of kaons, B-d and B-s mesons. In the lepton sector, the model predicts an inverted hierarchy for the neutrino masses, leading to a potentially observable rate of neutrinoless double beta decay

    Towards Minimal S4 Lepton Flavor Model

    Get PDF
    We study lepton flavor models with the S4S_4 flavor symmetry. We construct simple models with smaller numbers of flavon fields and free parameters, such that we have predictions among lepton masses and mixing angles. The model with a S4S_4 triplet flavon is not realistic, but we can construct realistic models with two triplet flavons, or one triplet and one doublet flavons.Comment: 18 pages, 4 figures, references are adde

    A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A4

    Get PDF
    We discuss a grand unified model based on SUSY SU(5) in extra dimensions and on the flavour group A4xU(1) which, besides reproducing tri-bimaximal mixing for neutrinos with the accuracy required by the data, also leads to a natural description of the observed pattern of quark masses and mixings.Comment: 19 page

    Strong coupling, discrete symmetry and flavour

    Full text link
    We show how two principles - strong coupling and discrete symmetry - can work together to generate the flavour structure of the Standard Model. We propose that in the UV the full theory has a discrete flavour symmetry, typically only associated with tribimaximal mixing in the neutrino sector. Hierarchies in the particle masses and mixing matrices then emerge from multiple strongly coupled sectors that break this symmetry. This allows for a realistic flavour structure, even in models built around an underlying grand unified theory. We use two different techniques to understand the strongly coupled physics: confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both approaches yield equivalent results and can be represented in a clear, graphical way where the flavour symmetry is realised geometrically.Comment: 31 pages, 5 figures, updated references and figure

    Accidental stability of dark matter

    Get PDF
    We propose that dark matter is stable as a consequence of an accidental Z2 that results from a flavour-symmetry group which is the double-cover group of the symmetry group of one of the regular geometric solids. Although model-dependent, the phenomenology resembles that of a generic Higgs portal dark matter scheme.Comment: 12 pages, final version, published in JHE

    Prolonged RT-PCR test positivity in hemodialysis patients with COVID-19

    Get PDF
    Background: The weakened immune system of patients on hemodialysis (HD) may prolong SARS-CoV-2 infection compared to the general population. Current international guidelines recommend ending isolation in conjunction with serial testing in moderately and severely immunocompromised subjects. This study aimed to estimate SARS-CoV-2 infectivity by measuring RT-PCR test positivity in HD patients. A comparison between RT-PCR test and cycle threshold (Ct) value has been performed as a secondary endpoint. Methods: A single-center retrospective study was conducted at the University of Modena (Italy) from March 2020 to October 2022. Only patients on chronic HD therapy with COVID-19 were enrolled in the study. In our HD Center, two negative nasopharyngeal reverse transcription polymerase chain reaction (RT-PCR) results were used to end quarantine in this population. SARS-CoV-2 RT-PCR test positivity duration measured the time elapsed from a positive RT-PCR to a second negative test. Ct cut-off of 35 cycles was used to definite “high Ct value,” a condition characterized by a large number of cycles of PCR amplification to register a positive RT-PCR test. Results: During the observational period, 159 cases of SARS-CoV-2 infections were diagnosed in 151 patients. Median age was 70.1 (54.3–81.6) years and males accounted for 59.6% of the COVID-19 population. Median duration of SARS-CoV-2 RT-PCR test positivity on the nasal mucosa accounted for 30 (IQR, 21–40.5) days. Unvaccinated patients experienced significantly longer RT-PCR test positivity compared to vaccinated patients (42 [IQR,31–56] vs. 28 [IQR,20–35.7] days; p = < 0.001). The use of high Ct value, a laboratory surrogate of SARS-CoV-2 replication, anticipated a negative RT-PCR test of 9 (IQR, 6–12) days. Multivariate linear regression analysis showed that increased age (β coefficient 0.31; confidence interval [CI] 95%, 0.14—0.43; p = < 0.001) and the lack of anti-SARS-CoV-2 vaccination (β 0.49 CI95%, 11.9–22.5; p = < 0.001) were predictors of a prolonged RT-PCR positivity. Conclusions: Patients with COVID-19 on HD had prolonged RT-PCR test positivity. The adoption of “high Ct value” criteria led to a significant reduction in the duration of RT-PCR test positivity compared to the use of the classical nucleic acid amplification test. In our study, the lack of SARS-CoV-2 vaccination and older age were independently associated with a longer RT-PCR positivity

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    The 3-3-1 model with S_4 flavor symmetry

    Full text link
    We construct a 3-3-1 model based on family symmetry S_4 responsible for the neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal quark mixing have been obtained. The new lepton charge \mathcal{L} related to the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L} and the lepton parity P_l=(-)^L known as a residual symmetry of L have been introduced which provide insights in this kind of model. The expected vacuum alignments resulting in potential minimization can origin from appropriate violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions can be explained from the existence of such terms too. If P_l is not broken by the vacuum values of the scalar fields, there is no mixing between the exotic and the ordinary quarks at the tree level.Comment: 20 pages, revised versio
    corecore