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1. Introduction

It is an experimental fact [1] that within measurement errors the observed neutrino mixing

matrix is compatible with the so called tri-bimaximal (TB) form, introduced by Harrison,

Perkins and Scott (HPS) [2]. The best measured neutrino mixing angle θ12 is just about

1σ below the HPS value tan2 θ12 = 1/2, while the other two angles are well inside the

1σ interval [1]. In a series of papers [3 – 7] it has been pointed out that a broken flavour

symmetry based on the discrete group A4 appears to be particularly suitable to reproduce

this specific mixing pattern as a first approximation. Other solutions based on alternative

discrete or continuous flavour groups have also been considered [8, 9], but the A4 models

have a very economical and attractive structure, e.g. in terms of group representations

and of field content. In most of the models A4 is accompanied by additional symmetries,

either continuous like U(1) or discrete like ZN , which are necessary to eliminate unwanted

couplings, to ensure the needed vacuum alignment and to reproduce the observed mass

hierarchies. In this way one can construct natural models where the corrections to TB

mixing can be evaluated in a well defined expansion.

Recently much attention has been devoted to the question whether a model for HPS

mixing in the neutrino sector can be suitably extended to also successfully describe the

observed pattern of quark mixings and masses and whether this more complete framework

can be made compatible with (supersymmetric (SUSY)) SU(5) or SO(10) grand unification.

Early attempts of extending models based on A4 to quarks [10, 6] and to construct grand

unified versions [11] so far have not been completely satisfactory, e.g. do not offer natural
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mechanisms for mass hierarchies and for the vacuum alignment. A direct extension of the

A4 model to quarks leads to the identity matrix for VCKM in the lowest approximation,

which at first looks promising. But the corrections to it turn out to be strongly constrained

by the leptonic sector, because lepton mixings are nearly TB, and are proven to be too

small to accommodate the observed quark mixing angles [6]. Also, the quark classification

adopted in these models is not compatible with A4 commuting with SU(5).1 Due to this,

larger discrete groups are considered for the description of quarks and for grand unified

versions with approximate TB mixing in the lepton sector. A particularly appealing set of

models is based on the discrete group T ′, the double covering group of A4 [13]. In ref. [14]

a viable description was obtained, i.e. in the leptonic sector the predictions of the A4 model

are reproduced, while the T ′ symmetry plays an essential role for reproducing the pattern

of quark mixing. But, again, the classification adopted in this model is not compatible

with grand unification. Unified models based on the discrete groups T ′ [15], S4 [16] and

∆(27) [17] have been discussed. Several models using the smallest non-abelian symmetry

S3 (which is isomorphic to D3) can also be found in the recent literature [18].

In conclusion, the group A4 is considered by most authors to be too limited to also

describe quarks and to lead to a grand unified description. In the present work we show that

this negative attitude is not justified and that it is actually possible to construct a viable

model based on A4 which leads to a grand unified theory (GUT) of quarks and leptons

with TB mixing for leptons. At the same time our model offers an example of an extra

dimensional GUT in which a description of all fermion masses and mixings is attempted.

The model is natural, since most of the small parameters in the observed pattern of masses

and mixings as well as the necessary vacuum alignment are justified by the symmetries

of the model. For this, it is sufficient to enlarge the A4 flavour symmetry by adding a

U(1) of the Froggatt-Nielsen type and to suitably modify and extend the classification

under the flavour group so that finally all fermions transform in an SU(5) compatible

way. In addition, a Z3 symmetry must be assigned to the fields of the model which

is, however, flavour-independent. The formulation of SU(5) in extra dimensions has the

usual advantages of avoiding large Higgs representations to break SU(5) and of solving the

doublet-triplet splitting problem. A further ingredient of the model is a U(1)R symmetry

which contains the discrete R-parity as a subgroup. A see-saw realization in terms of an A4

triplet of right-handed neutrinos N ensures the correct ratio of light neutrino masses with

respect to the GUT scale. In the present model extra dimensional effects directly contribute

to determine the flavour pattern, in that the two lightest tenplets T1 and T2 are in the bulk

(with a doubling Ti and T ′
i , i = 1, 2 to ensure the correct zero mode spectrum), whereas the

pentaplets F and T3 are on the brane. The hierarchy of quark and charged lepton masses

and of quark mixings is determined by a combination of extra dimensional suppression

factors for the first two generations and of the U(1) charges, while the neutrino mixing

angles derive from A4. The choice of the transformation properties of the two Higgses H5

and H5̄ is also crucial. They are chosen to transform as two different A4 singlets 1 and 1′.

1In ref. [12] an A4 model compatible with the Pati-Salam group SU(4)× SU(2)L× SU(2)R has been

presented.
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As a consequence, mass terms for the Higgs colour triplets are not directly allowed2 and

their masses are introduced by orbifolding, à la Kawamura [19]. Finally, in this model,

proton decay is dominated by gauge vector boson exchange giving rise to dimension six

operators. Given the relatively large theoretical uncertainties, the decay rate is within the

present experimental limits.

The resulting model is shown to be directly compatible with approximate TB mixing

for leptons as well as with a realistic pattern of fermion masses and of quark mixings in a

SUSY SU(5) framework.

2. The model

We consider a SUSY GUT based on SU(5) in 4+1 dimensions. Leaving aside extra dimen-

sional effects for a moment, from the four-dimensional (4D) point of view matter fields are

chiral supermultiplets transforming as 10, 5̄ and 1 under SU(5). Part of the flavour sym-

metry is related to the discrete group A4, whose properties are summarized, for instance,

in section 2 of ref. [6], whose conventions are adopted here. The three 5̄ and the three

singlets (corresponding to the right-handed neutrinos) are grouped into A4 triplets F and

N , while the tenplets T1, T2 and T3 are assigned to 1′′, 1′ and 1 singlets of A4, respectively

(see table 1). The Higgs chiral supermultiplets that break the electroweak symmetry are

H5 and H5̄, transforming as (5, 1) and (5̄, 1′) under SU(5)×A4. We also consider a set

of flavon supermultiplets, all invariant under SU(5), that break the A4 symmetry: two

triplets ϕT and ϕS and two singlets ξ and ξ̃. The alignment of their vacuum expectation

values (VEVs) along appropriate directions in flavour space will be the source of TB lepton

mixing. It is well-known that, for this to work, each triplet should mainly contribute to

the mass generation of a specific sector. At the leading order and after spontaneous A4

breaking, ϕS , ξ and ξ̃ should give mass to neutrinos only, while ϕT gives mass to charged

leptons and to down quarks. This separation can be realized with the help of an additional

spontaneously broken Z3 symmetry under which N , F , Ti, H5,5̄, ϕS , ξ and ξ̃ are multiplied

by ω = exp(i2π/3), while ϕT is left invariant. The generation of the up quark masses as

well as the quark mixings will be discussed below.

The breaking of the grand unified symmetry is a potential source of serious prob-

lems, like those related to the doublet-triplet splitting and to proton decay. One of the

most efficient mechanisms to break SU(5) and avoid these problems is the one based on

compactification of extra spatial dimensions [19]. The simplest setting is an SU(5) gauge

invariant five-dimensional (5D) theory where the fifth dimension is compactified on a cir-

cle S1 of radius R. The gauge fields, living in the whole 5D space-time, are assumed

to be periodic along the extra dimension only up to a discrete parity transformation Ω

such that the gauge fields of the SU(3)×SU(2)×U(1) subgroup are periodic, while those

of the coset SU(5)/SU(3)×SU(2)×U(1) are antiperiodic. Only the gauge vector bosons

of SU(3)×SU(2)×U(1) possess a zero mode. Those of SU(5)/SU(3)×SU(2)×U(1) form a

Kaluza-Klein tower starting at the mass level 1/R. From the viewpoint of a 4D observer,

2Even after A4 breaking they are forbidden at all orders by the U(1)R symmetry.
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these boundary conditions effectively break SU(5) down to the Standard Model (SM) gauge

group, at a GUT scale of order 1/R. The transformation Ω is an automorphism of the

SU(5) algebra, so that the whole construction can be carried out within an SU(5) invariant

formalism. An important advantage of this mechanism is that it provides a simple solution

to the doublet-triplet splitting problem. The parity Ω is consistently extended to the Higgs

multiplets H5 and H5̄, also assumed to live in the whole 5D space, in such a way that the

electroweak doublets are periodic, whereas the colour triplets are antiperiodic. In this way

we have zero modes only for the doublets and the lightest colour triplets get masses of order

1/R. Notice that, if the model is supersymmetric as in the case under discussion here, we

have an effective 4D N = 2 SUSY, induced by the original N = 1 SUSY in five dimensions.

To reduce N = 2 down to N = 1 it is convenient to compactify the fifth dimension on the

orbifold S1/Z2 rather than on the circle S1. The orbifold projection eliminates all the zero

modes of the extra states belonging to N = 2 SUSY and also those of the fifth component

of the gauge vector bosons. The zero modes we are left with are the 4D gauge bosons

of the SM, two electroweak doublets and their N = 1 SUSY partners. To complete the

solution of the doublet-triplet splitting problem, we should also forbid a large mass term

H5H5̄, which would otherwise lift the doublet masses. As will be explained below, this is

automatically guaranteed by the U(1)R symmetry that we specify in table 1.

For the gauge vector bosons and the Higgses H5 and H5̄ we will adopt this setup,

which is described in detail in refs. [20]. For the remaining fields we have much more

freedom [20, 21]. Indeed the orbifold S1/Z2 corresponds to a segment where the fifth

coordinate y runs from 0 to πR. The boundaries of the segment determine two 4D slices

of the original 5D space-time. When boundary conditions are consistently defined for the

local parameters of SU(5) gauge transformations, we find that such transformations are

generically non-vanishing only in the bulk and at y = 0. At the opposite endpoint of the

segment, y = πR, the only gauge transformations that are different from zero are those of

the SM. Therefore we have three qualitatively different possible locations for the remaining

fields: in the bulk, at the SU(5) preserving brane y = 0, or at the SU(5) breaking brane

y = πR. We choose to put the two tenplets T1 and T2 of the first and second family in the

bulk. As explained in ref. [20, 21] to obtain the correct zero mode spectrum with intrinsic

parities compatible with symmetry and orbifolding, one must introduce two copies of each

multiplet with opposite parity Ω in the bulk. Therefore T1,2 is a short notation for the

copies T1,2 and T ′
1,2. The zero modes of T1,2 are the SU(2) quark doublets Q1,2, while those

of T ′
1,2 are U c

1,2 and Ec
1,2. All remaining N = 1 supermultiplets are assigned to the SU(5)

preserving brane at y = 0.

An interesting feature of the 5D setup is the automatic suppression of the Yukawa

couplings for the fields living in the bulk. Indeed, a bulk field B and its zero mode B0 are

related by:

B =
1√
πR

B0 + . . . (2.1)

where dots stand for the higher modes. This expansion produces a suppression factor

s ≡ 1√
πRΛ

< 1 . (2.2)
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Field N F T1 T2 T3 H5 H5̄ ϕT ϕS ξ, ξ̃ θ θ′′ ϕT
0 ϕS

0 ξ0

SU(5) 1 5̄ 10 10 10 5 5̄ 1 1 1 1 1 1 1 1

A4 3 3 1′′ 1′ 1 1 1′ 3 3 1 1 1′′ 3 3 1

U(1) 0 0 3 1 0 0 0 0 0 0 −1 −1 0 0 0

Z3 ω ω ω ω ω ω ω 1 ω ω 1 1 1 ω ω

U(1)R 1 1 1 1 1 0 0 0 0 0 0 0 2 2 2

Table 1: Fields and their transformation properties under SU(5), A4, U(1), Z3 and U(1)R. T1 and

T2 come in two replicas with the same quantum numbers, except for the intrinsic parity Ω. For

simplicity, we only show one of them in the table.

Thereby, Λ denotes the ultraviolet cut-off. Such a suppression factor enters the Yukawa

couplings depending on the field B0. As a result, the hierarchies among the charged fermion

masses are partly due to the geometrical dilution of the Yukawa couplings involving T1,2.

However this dilution cannot account for all the observed hierarchies and, to achieve a

realistic mass spectrum, we also exploit the Froggatt-Nielsen mechanism. The tenplets T1

and T2 are charged under a U(1) flavour group, spontaneously broken by the VEVs of two

fields θ and θ′′ both carrying U(1) charges −1. The elements of the charged fermion mass

matrices are provided by higher-dimensional operators with powers of θ and θ′′ balancing

the U(1) charge of the relevant combination of matter fields. Indeed, we need two fields, θ

and θ′′, in order to reproduce a realistic pattern of quark masses and mixing angles. Under

A4, θ is invariant, while θ′′ transforms as 1′′. All this is summarized in table 1.

Notice that, once we have introduced all the fields with the quantum numbers dis-

played in table 1, there will be no contribution coming from colour triplet exchange to the

dangerous dimension five operator that induces proton decay in SUSY theories. Actually

that operator is strictly forbidden as long as the U(1)R symmetry remains unbroken. In-

deed, the superpotential of the effective N = 1 SUSY should have U(1)R charge +2, to

compensate the R-charge −2 coming from the Grassmann integration measure d2θ. With

the R assignment in table 1, all superpotential couplings bilinear in the matter fields N ,

F and T have R-charge +2 and are allowed. At the same time dangerous operators are

forbidden. First of all these include the mass term H5H5̄, that would spoil the solution

to the doublet-triplet splitting problem. Moreover, since U(1)R contains the discrete R-

parity, also all renormalizable baryon and lepton number violating operators, such as FH5

and FFT , are not allowed. Finally, the dimension five operator FTTT , leading to proton

decay, has R-charge +4 and therefore is absent. As discussed in detail in ref. [6] and briefly

recalled in section 4, the U(1)R symmetry plays also an important role in the dynamics

that selects the correct vacuum of the theory, which is a crucial feature to reproduce nearly

TB mixing in the lepton sector. The U(1)R symmetry is a remnant of the SU(2)R sym-

metry of the N = 2 SUSY bulk action, before compactification. By reducing N = 2 down

to N = 1 the orbifold projection breaks SU(2)R down to U(1)R. Eventually, after the

inclusion of N = 1 SUSY breaking effects, the U(1)R symmetry will be broken down to the

discrete R-parity, at the low energy scale mSUSY. The operator FTTT might be generated,

but with a highly suppressed coupling of the kind (mSUSY/Λ)n/Λ, n > 0. Therefore, the
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leading contribution to proton decay comes from gauge vector boson exchange and the cor-

responding proton decay rate is typically small enough, though suffering from considerable

uncertainties [22].

3. Fermion masses

The N = 2 SUSY invariance is broken down to N = 1 by the orbifold projection, but it

still forbids 5D superpotential couplings. These couplings should be strictly localized at

one of the two branes. By choosing the brane at y = 0, the brane action reads:

∫

d4x

∫ πR

0

dy

∫

d2θ w(x)δ(y) + h.c. =

∫

d4x

∫

d2θ w(x) + h.c. . (3.1)

The superpotential w, which can be expressed in terms of N = 1 superfields, can be

decomposed into several parts:

w = wup + wdown + wν + wd + . . . . (3.2)

The first three contributions in eq. (3.2) give rise to fermion masses after A4, U(1) and

electroweak symmetry breaking. They are of the form:

wup =
1

Λ1/2
H5T3T3 +

θ′′

Λ2
H5T2T3 +

θ′′2

Λ7/2
H5T2T2 +

θθ′′2

Λ4
H5T1T3

+
θ4

Λ11/2
H5T1T2 +

θθ′′3

Λ11/2
H5T1T2 +

θ5θ′′

Λ15/2
H5T1T1 +

θ2θ′′4

Λ15/2
H5T1T1 (3.3)

wdown =
1

Λ3/2
H5̄(FϕT )′′T3 +

θ

Λ3
H5̄(FϕT )′T2 +

θ3

Λ5
H5̄(FϕT )T1 +

θ′′3

Λ5
H5̄(FϕT )T1

+
θ′′

Λ3
H5̄(FϕT )′′T2 +

θ2θ′′

Λ5
H5̄(FϕT )′T1 +

θθ′′2

Λ5
H5̄(FϕT )′′T1 + . . . , (3.4)

where dots stand for higher-dimensional operators. In both, wup and wdown, the dimension-

less coefficients of each independent operator have been omitted, for notational simplicity.

They are not predicted by the flavour symmetry, though they are all expected to be of

the same order. The powers of the cut-off Λ are determined by the dimensionality of the

various operators, by recalling that brane and bulk superfields have mass dimensions 1 and

3/2, respectively. Some combinations of matter fields, as for instance T1T2 in wup, appear

several times, but with the same cut-off suppression. Provided θ and θ′′ develop VEVs of

similar size, the corresponding contributions to the charged fermion mass matrices will be

of the same order. The bulk matter supermultiplets T1 and T2 come in two copies and,

to keep our notation compact, the previous formulae do not contain all possible terms

originating from such a doubling. For instance, F1T2 stands for both combinations F1T2

and F1T
′
2, which are suppressed by the same power of Λ, but can differ by order-one rela-

tive weights. It is important to keep this point in mind, since it allows to escape the too

rigid mass relations between the first two generations of charged leptons and down quarks

predicted by the minimal SU(5) GUT.
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Neutrinos have both Dirac and Majorana mass terms, induced by:

wν =
yD

Λ1/2
H5(NF ) + (xaξ + x̃aξ̃)(NN) + xb(ϕSNN) , (3.5)

where ξ̃ is defined as the combination of the two independent ξ-type fields which has a

vanishing VEV. Therefore, it does not contribute to the neutrino masses.

The last term in eq. (3.2), wd, is responsible for the alignment of the flavon fields ϕT ,

ϕS , ξ and ξ̃. The fields θ and θ′′ get VEVs from the minimisation of the D-term of the

scalar potential. We will discuss these issues in the next section. For the time being we

assume that the scalar components of the supermultiplets acquire VEVs according to the

following scheme:

〈ϕT 〉
Λ

= (vT , 0, 0),
〈ϕS〉
Λ

= (vS , vS , vS),
〈ξ〉
Λ

= u,

〈θ〉
Λ

= t,
〈θ′′〉
Λ

= t′′. (3.6)

The Higgs multiplets live in the bulk and what matters for the Yukawa couplings are the

values of the VEVs at y = 0:

〈H5(0)〉 =
v0
u√
πR

, 〈H5̄(0)〉 =
v0
d√
πR

, (3.7)

where v0
u,d have mass dimension 1. The electroweak scale is determined by the relation:

v2
u + v2

d ≈ (174 GeV)2 , v2
u ≡

∫ πR

0

dy |〈H5(y)〉|2 , v2
d ≡

∫ πR

0

dy |〈H5̄(y)〉|2 . (3.8)

Notice that the electroweak gauge boson masses depend on the 5D averages of |〈H5,5̄(y)〉|2,
rather than on the values at y = 0. If the VEVs of H5,5̄ are constant along the fifth

dimension, then v0
u = vu and v0

d = vd. However, if the profile of 〈H5,5̄(y)〉 is not flat in

y, the parameters v0
u,d are less constrained. In order to obtain v0

u,d 6= vu,d, we need some

special dynamics on the y = 0 and y = πR branes, that we cannot control without detailing

additional features of the model, such as the breaking of the residual N = 1 SUSY and

the generation of a non-trivial potential for the electroweak doublets. In this section we

consider v0
u,d 6= vu,d as an open possibility and we will discuss a possible application of it.

All the other fields have vanishing VEVs.

From these VEVs, the superpotential terms in eqs. (3.3), (3.4), (3.5) and the volume

suppression s of eq. (2.2), it is immediate to derive the fermion mass matrices. In the up

and down quark sector we get, up to unknown coefficients of order one for each matrix

element and by adopting the convention fRmffL:

mu =







s2t5t′′ + s2t2t′′4 s2t4 + s2tt′′3 stt′′2

s2t4 + s2tt′′3 s2t′′2 st′′

stt′′2 st′′ 1






sv0

u, (3.9)

md =







st3 + st′′3 . . . . . .

st2t′′ st . . .

stt′′2 st′′ 1






vT sv0

d, (3.10)
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where the dots stand for subleading contributions, that will be fully discussed in section 5.

Here we explicitly see the interplay between the volume dilution and the Froggatt-Nielsen

mechanism, to achieve the hierarchical pattern of the quark mass matrices. Realistic values

of quark mass ratios and mixing angles are obtained by assuming

t ≈ t′′ ≈ s ≈ O(λ) with λ ≡ 0.22 . (3.11)

Indeed, with this choice we obtain

mu =







λ8 λ6 λ4

λ6 λ4 λ2

λ4 λ2 1






λv0

u , (3.12)

md =







λ4 . . . . . .

λ4 λ2 . . .

λ4 λ2 1






vT λv0

d . (3.13)

We anticipate that, in the absence of corrections to the vacuum alignment given in eq. (3.6),

the dots receive contributions from highly suppressed operators. In this case the entries 12,

13 and 23 of md/(vT v0
d) would be of order λ7, λ5 and λ5, respectively. Since vT ≈ O(λ2)

(see below), mb/mt ≈ vT v0
d/v

0
u ≈ λ2 is easily reproduced by taking v0

u ≈ v0
d. Notice that

there is an overall factor s ≈ O(λ), coming from the normalization of the Higgs VEVs,

eq. (3.7), suppressing both mu and md. In order to avoid large dimensionless coefficients,

we make use of the freedom related to the boundary values v0
u,d and we will assume that

vu,d ≈ λv0
u,d. In this way, the Yukawa coupling of the top quark is of order one and, by

the patterns given in eqs. (3.12), (3.13), also all the other couplings are of the same order.

Alternatively, if the Higgs VEVs are flat along the fifth dimension and v0
u,d = vu,d, we

must assume that all Yukawa operators in w have similar couplings of order 1/λ [23]. To

correctly reproduce the quark mixing angle between the first and the second generation,

a moderate tuning is needed in order to enhance the individual contributions from the up

and down sectors, which are both of order λ2.

The mass matrix for the charged lepton sector is of the type:

me =







st3 + st′′3 st2t′′ stt′′2

. . . st st′′

. . . . . . 1






vT sv0

d =







λ4 λ4 λ4

. . . λ2 λ2

. . . . . . 1






vT λv0

d . (3.14)

We observe that the minimal SU(5) relation me = mT
d is relaxed. Indeed, while the third

column of md exactly coincides with the third row of me, thus implying mb ≈ mτ at the

GUT scale, the remaining entries are only equal (up to a transposition) at the level of the

orders of magnitude, since T1,2 are doubled. This allows to evade the too rigid relations

mµ = ms and me = md of minimal SU(5). In our 5D setup these relations hold only

up to order one coefficients and acceptable values of the masses for e, µ, d and s can be

accommodated.

In the neutrino sector, after the fields ϕS and ξ develop their VEVs, the gauge singlets

N become heavy and the see-saw mechanism takes place. The mass matrix for light
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neutrinos is given by:

mν =
1

3a(a + b)













3a + b b b

b
2ab + b2

b − a

b2 − ab − 3a2

b − a

b
b2 − ab − 3a2

b − a

2ab + b2

b − a













s2(v0
u)2

Λ
, (3.15)

where

a ≡ 2xau

(yD)2
, b ≡ 2xbvS

(yD)2
. (3.16)

The neutrino mass matrix is diagonalized by the transformation:

UT mνU = diag(m1,m2,m3) , (3.17)

where, in units of s2(v0
u)2/Λ,

m1 =
1

(a + b)
, m2 =

1

a
, m3 =

1

(b − a)
(3.18)

and U is given by

U =







√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 +1/
√

2






. (3.19)

Note that, in the leading approximation, the model predicts the relation:

2

m2

=
1

m1

− 1

m3

. (3.20)

It is expected to hold up to corrections of O(λ2), as will be discussed in section 5. Notice,

that in our conventions mi (i = 1, 2, 3) are in general complex numbers, so that the previous

relation cannot be used to exactly predict one physical neutrino mass in terms of the other

two ones. Nevertheless, it provides a non-trivial constraint that the neutrino masses should

obey.

To get the right solar mixing angle, we should impose |m2| > |m1| and this requires

cos φ > −|z|/2, where z = b/a and φ is the phase difference between the complex numbers

a and b. The neutrino spectrum can have either normal or inverted mass ordering. If

max(−1,−|z|/2) ≤ cos φ ≤ 0 the ordering is inverted, |m3| ≤ |m1| < |m2|, while |z|/2 ≤
cos φ ≤ 1 gives rise to a normal ordering, |m1| < |m2| ≤ |m3|. By defining

r ≡ ∆m2
sol/∆m2

atm , ∆m2
sol ≡ |m2|2−|m1|2 , ∆m2

atm ≡
∣

∣|m3|2 − |m1|2
∣

∣ , (3.21)

we find

r =
|1 − z|2|z + z̄ + |z|2|

2|z + z̄| , z ≡ b

a
. (3.22)
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We see that a sufficiently small r requires z not to far from either +1 (cos φ = 1, normal

hierarchy) or -2 (cos φ = −1, inverted hierarchy). If we expand z around +1, we obtain:

|m1|2 =
1

3
∆m2

atm r + . . .

|m2|2 =
4

3
∆m2

atm r + . . .

|m3|2 =
(

1 +
r

3

)

∆m2
atm + . . .

|mee|2 =
16

27
∆m2

atm r + . . . , (3.23)

where we have expressed the parameters in terms of ∆m2
atm and r. Dots denote terms of

order r2 and |mee| is the effective mass combination controlling the violation of the total

lepton number in neutrinoless double beta decay. It is useful to estimate the cut-off Λ. We

have roughly
√

∆m2
atm ≈ s2(v0

u)2

|a|Λ√r
. (3.24)

By taking
√

∆m2
atm = 0.05 eV, s2(v0

u)2 = (100 GeV)2 and
√

r ≈ 0.2, we obtain |a|Λ ≈
1015 GeV, not far from the unification scale. For u ≈ vS,T ≈ λ2 the cut-off Λ is then above

1016 GeV. If we expand z around -2, we get:

|m1|2 =

(

9

8
+

r

12

)

∆m2
atm + . . .

|m2|2 =

(

9

8
+

13

12
r

)

∆m2
atm + . . .

|m3|2 =

(

1

8
+

r

12

)

∆m2
atm + . . .

|mee|2 =

(

1

8
− 11

108
r

)

∆m2
atm + . . . . (3.25)

We now have
√

∆m2
atm ≈ s2(v0

u)2

|a|Λ . (3.26)

By repeating the previous estimate, we find |a|Λ ≈ 1014 GeV and Λ slightly below 1016 GeV.

Several remarks should be made:

Concerning the lepton mixing, this is dominated by U , eq. (3.19). The contribution

from the charged lepton sector depends on the entries denoted by the dots in me. Putting

all the dots to zero, the charged leptons affect the lepton mixing through rotations of

order λ4, λ8 and λ4 in the 12, 13 and 23 sectors, respectively. Operators of dimensions

higher than the ones, considered so far, are strongly suppressed and provide contributions

of order λ4 to the mixing matrix. These are negligible, since the leading effect comes from

the modification of the vacuum structure of eq. (3.6), due to higher order terms in the

scalar potential. We shall discuss this in sections 4 and 5. Eventually, such terms modify

only slightly the TB mixing pattern.
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Apart from wν contributions to neutrino masses and mixing angles might come from

higher dimensional operators, as for instance

ξξFFH5H5

Λ4
. (3.27)

However, they are completely negligible compared to those discussed above. If we forced

this type of operator to be the dominant one, by eliminating the singlets N from our model,

we would need a value of Λ too small compared with the GUT scale.

Depending on the value of z, our model gives rise to two separate branches in the

neutrino spectrum, both characterized by a nearly TB mixing. On the first branch, z ≈ +1,

we find a spectrum with normal hierarchy, while on the second branch, z ≈ −2, we get an

inverted hierarchy. A degenerate spectrum is actually disfavored in our construction, since

it would require z ≪ 1 (see eq. (3.18)) which leads to r close to 1/2, as can be read off

from eq. (3.22). This can obviously not be reconciled with the data.

In our model the possibility of normal hierarchy is somewhat more natural than the

one of inverted hierarchy. There is no reason a priori why z should be close to +1 or to −2

and reproducing r requires some amount of tuning. However, such a tuning is stronger for

inverted hierarchy (ih) than for the normal one (nh), as can be seen by

dr

dz

∣

∣

∣

∣

nh

dz

dr

∣

∣

∣

∣

ih

≈ − 4

3
√

3

√
r ≈ −0.14 . (3.28)

The derivatives are computed at the relevant value of z in each case and r is the exper-

imental value. Moreover the solution with a normal hierarchy has a domain of validity

in energy larger by a factor of 1/
√

r ≈ 5.6 and extends beyond 1016 GeV. In the normal

hierarchy solution we find with the help of eq. (3.23)

∑

i

|mi| ≈ (0.06 − 0.07) eV and |mee| ≈ 0.007 eV . (3.29)

It is interesting to see that |mee| is close to the upper limit of the range expected in the

normal hierarchy case, being not too far from the aimed for sensitivity of the next generation

of neutrinoless double beta decay experiments, 0.01 eV. This is partly attributed to the fact

that |m1| ≈ 0.005 is different from zero and in part to the absence of a negative interference

with the m3 contribution, as θ13 = 0.

4. Vacuum alignment

Here we discuss the minimisation of the scalar potential, in order to justify the VEVs

assumed in the previous section. We work in the limit of exact SUSY. This will not allow

us to analyse the electroweak symmetry breaking induced by H5 and H5̄, whose VEVs are

assumed to vanish in first approximation. Indeed all the VEVs we are interested in here,

i.e. those of the flavon fields ϕS,T , ξ, ξ̃, θ and θ′′, are relatively close in magnitude to the

cut-off Λ and therefore much larger than the electroweak scale, which will be consistently

neglected. Moreover we work at leading order in the parameter 1/Λ, that is we keep
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only the lowest dimensional operators in the superpotential shown in the previous section.

Subleading effects will be discussed later on. All the multiplets but the flavon ones are

assumed to have vanishing VEVs and set to zero for the present discussion. We regard

the U(1) Froggatt-Nielsen flavour symmetry as local. Since the field content displayed in

table 1 is anomalous under the U(1), we need additional chiral multiplets to cancel the

anomaly. These multiplets can be chosen vector-like with respect to SU(5), so that they

only contribute to the U(1) anomaly. Here we do not need to specify these fields, but we

must presume that they do not acquire a VEV. Within these assumptions the relevant part

of the scalar potential of the model is given by the sum of the F-terms and of a D-term:

V = VF + VD , (4.1)

VF =
∑

i

∣

∣

∣

∣

∂w

∂ϕi

∣

∣

∣

∣

2

, (4.2)

where ϕi stands for the generic chiral multiplet. Only the last term in eq. (3.2), wd,

contributes to the VEVs we are looking for. It is given by:

wd = M(ϕT
0 ϕT ) + g(ϕT

0 ϕT ϕT )

+g1(ϕ
S
0 ϕSϕS) + g2ξ̃(ϕ

S
0 ϕS) + g3ξ0(ϕSϕS) + g4ξ0ξ

2 + g5ξ0ξξ̃ + g6ξ0ξ̃
2 .

Since also the terms in wd have to have R-charge +2, we introduce additional gauge singlets,

so called driving fields, ϕT
0 , ϕS

0 and ξ0 with R-charge +2 (see table 1). Note that therefore

all terms in wd are linear in these fields. Note further that due to U(1) invariance neither

the multiplet θ, nor the multiplet θ′′ is contained in wd. Moreover the D-term VD does not

depend on ϕS,T , ξ, ξ̃, which are all singlets under the (gauged) U(1). The expression of wd

and the minimisation procedure are exactly as described in ref. [6] and leads to the result

anticipated in the previous section:

〈ϕT 〉 = (vT , 0, 0)Λ , vT Λ = −3M

2g
,

〈ϕS〉 = (vS , vS , vS)Λ , vS =
g̃4

3g̃3

u ,

〈ξ〉 = uΛ ,

〈ξ̃〉 = 0 (4.3)

with u undetermined and g3 ≡ 3g̃2
3 , g4 ≡ −g̃2

4. In the following we take vT , vS and u to

be of O(λ2). This order of magnitude is indicated by the observed ratio of up and down

or charged lepton masses, by the scale of the light neutrino masses and is also compatible

with the bounds on the deviations from TB mixing for leptons.

The D-term is given by:3

VD =
1

2
(M2

FI − gFN|θ|2 − gFN|θ′′|2 + . . .)2 (4.4)

3Note that |θ′′|2 is a singlet under A4, because θ
′′ ∼ 1′′ and θ

′′∗ ∼ 1′ under A4.
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where gFN is the gauge coupling constant of U(1) and M2
FI denotes the contribution of the

Fayet-Iliopoulos term. We have omitted the SU(5) contribution to the D-term, whose VEV

is zero. There are SUSY minima such that VF = VD = 0. The vanishing of VD requires

gFN|θ|2 + gFN|θ′′|2 = M2
FI . (4.5)

If the parameter M2
FI is positive, the above condition determines a non-vanishing VEV for

a combination of θ and θ′′. Here we assume that the VEVs fulfil t, t′′ ∼ O(λ) according to

eqs. (3.6), (3.11). The different order of t, t′′ versus vT , vS and u can be attributed to the

different couplings and mass parameters in VD and VF .

Finally, we discuss the subleading corrections to the vacuum alignment. As already

noticed above, the fields θ and θ′′ cannot couple to the flavon fields, since the flavons ϕT ,

ϕS , ξ, ξ̃, ϕT
0 , ϕS

0 and ξ0 are not charged under the U(1) symmetry, responsible for the

charged fermion mass hierarchy. Therefore, the subleading effects in the potential arise

from terms made up of one driving field and three fields ϕT , ϕS , ξ and ξ̃. They induce

shifts in the VEVs shown above and thereby influence the mass matrices, as discussed in

the next section. Since the flavon field content of this model is essentially the same as the

one in ref. [6], not only the renormalizable part of wd coincides, but also the subleading

terms are the same. Hence, we do not need to repeat this discussion and we only state the

results found there. The shifted VEVs are

〈ϕT 〉/Λ = (vT + δvT1, δvT2, δvT3) ,

〈ϕS〉/Λ = (vS + δv1, vS + δv2, vS + δv3) ,

〈ξ〉/Λ = u ,

〈ξ̃〉/Λ = δu′ , (4.6)

where u remains undetermined and, once we have taken vT,S, u ∼ O(λ2), all shifts are

suppressed by a factor of order λ2: δv/v ∼ O(λ2). As found in ref. [6] the following

relation holds:

δvT2 = δvT3 . (4.7)

Higher order corrections to t and t′′ simply amount to a rescaling that does not change

their individual order of magnitude which remains of O(λ).

5. Subleading corrections

In this section, we analyse the effects of the subleading corrections in terms of λ to the

fermion masses and mixings. The corrections arise from additional insertions of the flavons

ϕT , ϕS , ξ and ξ̃ as well as from shifts of the VEVs shown above.

5.1 Corrections to wup

In the up quark sector the leading order terms only involve the fields θ and θ′′, since they

are the only fields which have a non-vanishing U(1) charge among the gauge singlets of the

model. The subleading terms then additionally involve the fields ϕT , ϕS , ξ and ξ̃. As the
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tenplets transform as singlets under A4 and the combinations TiTjH5θ
nθ′′m are invariant

under the Z3 group, we cannot multiply the wup terms by a single flavon field. The most

economic possibility is to insert two flavons, namely ϕT ϕT . Among the three contractions

leading to a 1 or 1′ or 1′′ representation of A4 only the 1 has a non-vanishing VEV, given

that 〈ϕT 〉 = (vT , 0, 0)Λ. Therefore the dominant subleading corrections to the up quark

mass matrix have the same structure as the leading order results and are suppressed by

an overall factor v2
T ∼ O(λ4). The fields ϕS and ξ, ξ̃ can only couple at the level of

three flavon insertions due to the requirement of Z3 invariance. However, all contributions

stemming from three flavon insertions are suppressed by λ6 relative to the leading order

term. Similarly, the corrections due to shifts in the VEVs contribute at most at relative

order λ6. For the up quark masses and the mixings all these corrections are negligible.

5.2 Corrections to wdown

In the down sector the main effect of the subleading corrections is to fill the zeros indicated

by dots in the upper triangle of md. In order to maintain the A4 invariance the leading

order terms include one insertion of the flavon ϕT . The subleading corrections arise from

two effects: a.) replacing ϕT with products of flavon fields and b.) including the corrections

to the VEVs of ϕT . The replacement of ϕT with a product ϕT ϕT is the simplest choice

compatible with the Z3 charges. Note that this is similar to the up quark sector. If the

VEVs are unchanged this contribution to md is of the same form as displayed in eq. (3.10)

and suppressed by vT ∼ O(λ2) compared to the leading result due to the additional flavon

field. Therefore this type of correction does not fill the zeros in md. They are filled by the

corrections coming from the VEV shifts inserted in the terms containing one flavon ϕT .

Considering that we assumed all δv/v ∼ O(λ2), the corrections to the matrix elements of

md are of the following order in λ:

δmd =







λ6 λ4 λ2

λ6 λ4 λ2

λ6 λ4 λ2






vT λv0

d .

As said, the matrix elements which are already non-vanishing at the leading order,

eq. (3.10), receive additional corrections from the two flavon insertion ϕT ϕT . These are

of the same order as the corrections from the VEV shifts, e.g. for the element 11 also of

order λ6. In summary, the zeroes in the elements 12, 13 and 23 of md, appearing at leading

order, are replaced by terms of order λ4, λ2 and λ2, respectively, in units of vT λv0
d.

In our model the relation md = mT
e is not valid for the first two families but it still

holds at the level of orders of magnitude for each entry. So the powers of λ are also the

same for each matrix element of mdm
†
d and of m†

eme. This is important as the matrix

m†
eme is diagonalized by the unitary matrix Ue that enters in determining the leptonic

mixing matrix U = U †
eUν . The results just described for the subleading corrections on md

and m†
e imply that Ue induces corrections of O(λ2) on all mixing angles in U , that is, in

our case, corrections of O(λ2) to the TB values of each mixing angle.
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5.3 Corrections to wν

Also the wν term of the superpotential, eq. (3.5), is modified by terms with more flavon

factors and by subleading corrections to the VEVs. The Dirac mass term, proportional

to H5(NF ), is mainly modified by a single ϕT insertion, that produces corrective terms

suppressed by a O(λ2) factor. These corrections are of the same order as those arising

for Majorana mass terms. In fact, NN can be in a 1 , 1′, 1′′ or 3s combination. Since

NN ∼ ω2 under Z3, the singlet 1 can be multiplied by ξ (the singlet leading term) or by

(ϕT ϕS) (which can be absorbed into a redefinition of the leading term), 1′ by (ϕT ϕS)
′′

, 1′′ by

(ϕT ϕS)′ and 3s by ϕS (the triplet leading term) or by (ϕT ξ) or (ϕT ϕS)3s
or (ϕT ϕS)3a

. All

two flavon insertions lead to corrections of relative order of O(λ2) to the matrix elements

of the Majorana matrix. In addition, the shifts of the ϕS VEVs applied to the triplet

leading term also produce O(λ2) corrective terms. As it is easy to check, in general there

are enough parameters so that all 6 independent entries of the (symmetric) Majorana mass

matrix receive a different correction at O(λ2).

The described corrections affect the neutrino masses and, together with the corrections

to me, also all lepton mixing angles. In general, we expect that the deviations from zero

of sin θ13, tan2 θ12 − 1
2

and tan2 θ23 − 1 are all of the same order. To be compatible with

the data, given the accuracy of the TB approximation, the dominant corrections must

be of O(λ2) at most, and this is precisely the magnitude of the terms that we have just

mentioned.

6. Conclusion

We have constructed a SUSY SU(5) grand unified model which includes the A4 description

of TB mixing for leptons. For this it is not only necessary to adopt an A4 classification

of quarks and leptons compatible with SU(5), but also to introduce additional U(1) and

ZN symmetries and to suitably formulate the grand unification model. We find that the

most attractive solution to cope with the different requirements from fermion mass and

mixing hierarchies, from the problem of doublet-triplet splitting in the Higgs sector, from

proton decay bounds and from maintaining bottom tau unification only, is a formulation

in 5 space-time dimensions with a particular location of the different fields, with some of

them on the brane at y = 0 and some in the bulk. The latter include the gauge and Higgs

fields as well as the tenplets of the first two, i.e. lightest, families. The resulting model

naturally leads to TB mixing in first approximation with corrections of O(λ2) from higher

dimensional effective operators, together with reproducing the observed mass hierarchies

for quarks and charged leptons and the CKM mixing pattern. In the quark sector, however,

as is typical of U(1) models, only orders of magnitude are determined in terms of powers of

λ with exponents fixed by the charges. A moderate fine tuning is only needed to enhance

the CKM mixing angle between the first two generations, which would generically be of

O(λ2), and to suppress the value of r, given in eq. (3.22), which would typically be of order

1. The latter feature is also true in all purely leptonic A4 models, in which A4 leads to

the correct mixing, but not directly to the spectrum of the neutrino masses. Actually the

model allows for both types of neutrino mass hierarchy, the normal and the inverted one.
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The normal hierarchy is, however, somewhat more natural, since it requires less tuning to

reproduce r. Furthermore, it is consistent with a larger value of the cut-off Λ. In addition

to the leading order result all subleading corrections to fermion masses and mixings have

been carefully analysed.

The main point of this work is that we have demonstrated that the simple A4 approach

to TB mixing is compatible with a grand unified picture describing all quark and lepton

masses and mixings. However, an interesting question is to what extent the flavour dynam-

ics assumed in this model can be tested at experimentally accessible energies. A number of

specific predictions have been described in the previous sections and are summarised here:

in the leading approximation (valid up to O(λ2) corrections) the relation eq. (22) holds

among the (complex) light neutrino mass eigenvalues. Furthermore, if the normal hierar-

chy is the correct one, the model predicts that the sum of neutrino masses must be around

(0.06 − 0.07) eV and |mee| close to 0.007 eV. Therefore, |mee| is not far from the experi-

mental sensitivity aimed for in the near future. The observation of a degenerate neutrino

mass spectrum could even rule out the present version of this setup since the degeneracy

of the neutrino masses cannot be reconciled with the smallness of r, see eqs. (3.18), (3.22).

Concerning the mixing angles we find that the size of sin θ13 is related to the deviations of

the atmospheric angle from maximal and of the solar angle from the TB value. Thus, if

one takes seriously the indication in the present data that the central value of tan2 θ12 is

below the TB value of 1/2, then one expects sin θ13 ∼ O(λ2) which should be accessible to

next generation of experiments.

Note that we did not specify the mechanism and details of SUSY breaking. So we

do not have definite predictions on the size of flavour changing neutral current transitions

which often pose very strong constraints on SUSY GUT models. For example, in case of

gauge mediated SUSY breaking these problems are usually avoided. However, in general

such issues are not specific to the A4 flavour symmetry and therefore were not treated in

detail here.
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