10 research outputs found
Identification of Cryptic MHC I–restricted Epitopes Encoded by HIV-1 Alternative Reading Frames
Human immunodeficiency virus (HIV) 1 major histocompatibility complex (MHC) I–restricted epitopes are widely believed to be derived from viral proteins encoded by primary open reading frames. However, the HIV-1 genome contains alternative reading frames (ARFs) potentially encoding small polypeptides. We have identified a panel of epitopes encoded by ARFs within the gag, pol, and env genes. The corresponding epitopic peptides were immunogenic in mice humanized for MHC-I molecules. In addition, cytotoxic T lymphocytes recognizing these epitopes were found in HIV-infected patients. These results reveal the existence of atypical mechanisms of HIV-1 epitope generation. They indicate that the repertoire of epitopes recognized by the cellular anti–HIV-1 immune response is broader than initially thought. This should be taken into account when designing vaccine strategies aimed at activating these responses
Degradation of methylammonium lead iodide perovskite structures through light and electron beam driven ion migration
[Image: see text] Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques
Pediatric Measles Vaccine Expressing a Dengue Antigen Induces Durable Serotype-specific Neutralizing Antibodies to Dengue Virus
Dengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV). As a proof-of-concept, we inserted into the MV vector a sequence encoding a minimal combined dengue antigen composed of the envelope domain III (EDIII) fused to the ectodomain of the membrane protein (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measles–dengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist
Supramolecular organization of conjugated polythiophenes studied by harmonic light scattering
Crystallization is a very common process in nature and has important applications in many scientific domains. The crystal structure determines physical and chemical material properties. It is easy and well known how to characterize crystal structures. However to gain control over the crystals structure and the properties (i.e. crystal engineering), one must control the crystallization process. To do so, fundamental understanding of the underlying growth process is key.
Harmonic light scattering, a recently developed nonlinear optical scattering technique that combines second- and third-harmonic light scattering, is sensitive to symmetry, concentration and size variations from molecular level up to molecular assemblies in situ, making it an ideal technique to investigate crystallization processes.
In this thesis the supramolecular organization of conjugated polythiophenes has been studied. Polythiophene has been topic of many experimental studies for its interesting opto-electronic properties.
First, the supramolecular organization of a linear regioregular poly(3-alkylthiophene) was explored. Supramolecular organization was induced by reducing the solvent quality upon addition of a non-solvent. The assembly process could be divided in three conformational states; solubilized isolated single chain, pre-ordered polymer-solvent cluster and a fully planarized and electronically coupled assembled structure. The intermediate state, a pre-ordered polymer-solvent cluster resembled the final helically octopolar assembled structure.
Further, there were indications that the organization process may be entirely different when the solvent quality is reduced by lowering the solution temperature.
In a second study, the influence of these two types of induced supramolecular organization by reducing the solvent quality i.e. for a solvent/non-solvent system and for a temperature regime was investigated.
The polythiophene in this study was a star-shaped poly(3-alkythiophene).
The supramolecular organization mechanism in the solvent/non-solvent system could be divided in four regions with two intermediate clustered states. First, isolated polymer chains were well dissolved. Next, the polymer chains organized in clusters but the star arms were still randomly coiled, followed by the partial planarization of the star arms. The final octopolar assembly was fully planarized resulting in proper electronic coupling between the chains in the assembly. The resemblance with the supramolecular organization of the linear poly(3-alkylthiophene) was remarkable. The mechanistic behavior might be generalized for all conjugated systems.
In the temperature regime on the other hand, there was no evidence for the presence of intermediate clusters. The mechanistic behavior could be divided in two regions; isolated single chains and assembled polymer with a markedly different structure i.e. dipolar symmetry and much larger size.
As a result of these findings, the influence of solvent choice on the supramolecular organization for a solvent/non-solvent system gained interest. The solvent had an important influence on the mechanistic behavior of the supramolecular organization.status: publishe
Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160DeltaV1V2 is strongly immunogenic.
International audienceAlthough a live attenuated HIV vaccine is not currently considered for safety reasons, a strategy inducing both T cells and neutralizing antibodies to native assembled HIV-1 particles expressed by a replicating virus might mimic the advantageous characteristics of live attenuated vaccine. To this aim, we generated a live attenuated recombinant measles vaccine expressing HIV-1 Gag virus-like particles (VLPs) covered with gp160DeltaV1V2 Env protein. The measles-HIV virus replicated efficiently in cell culture and induced the intense budding of HIV particles covered with Env. In mice sensitive to MV infection, this recombinant vaccine stimulated high levels of cellular and humoral immunity to both MV and HIV with neutralizing activity. The measles-HIV virus infected human professional antigen-presenting cells, such as dendritic cells and B cells, and induced efficient presentation of HIV-1 epitopes and subsequent activation of human HIV-1 Gag-specific T cell clones. This candidate vaccine will be next tested in non-human primates. As a pediatric vaccine, it might protect children and adolescents simultaneously from measles and HIV
Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers.
A randomised, double-blind study assessing the potential of four adjuvants in combination with recombinant hepatitis B surface antigen has been conducted to evaluate humoral and cell-mediated immune responses in healthy adults after three vaccine doses at months 0, 1 and 10. Three Adjuvant Systems (AS) contained 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and QS21, formulated either with an oil-in-water emulsion (AS02B and AS02V) or with liposomes (AS01B). The fourth adjuvant was CpG oligonucleotide. High levels of antibodies were induced by all adjuvants, whereas cell-mediated immune responses, including cytolytic T cells and strong and persistent CD4(+) T cell response were mainly observed with the three MPL/QS21-containing Adjuvant Systems. The CD4(+) T cell response was characterised in vitro by vigorous lymphoproliferation, high IFN-gamma and moderate IL-5 production. Antigen-specific T cell immune response was further confirmed ex vivo by detection of IL-2- and IFN-gamma-producing CD4(+) T cells, and in vivo by measuring increased levels of IFN-gamma in the serum and delayed-type hypersensitivity (DTH) responses. The CpG adjuvanted vaccine induced consistently lower immune responses for all parameters. All vaccine adjuvants were shown to be safe with acceptable reactogenicity profiles. The majority of subjects reported local reactions at the injection site after vaccination while general reactions were recorded less frequently. No vaccine-related serious adverse event was reported. Importantly, no increase in markers of auto-immunity and allergy was detected over the whole study course. In conclusion, the Adjuvant Systems containing MPL/QS21, in combination with hepatitis B surface antigen, induced very strong humoral and cellular immune responses in healthy adults. The AS01B-adjuvanted vaccine induced the strongest and most durable specific cellular immune responses after two doses. These Adjuvant Systems, when added to recombinant protein antigens, can be fundamental to develop effective prophylactic vaccines against complex pathogens, e.g. malaria, HIV infection and tuberculosis, and for special target populations such as subjects with an impaired immune response, due to age or medical conditions
Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration
Organometal halide perovskites show promising features for cost-effective application in photovoltaics. The material instability remains a major obstacle to broad application because of the poorly understood degradation pathways. Here, we apply simultaneous luminescence and electron microscopy on perovskites for the first time, allowing us to monitor in situ morphology evolution and optical properties upon perovskite degradation. Interestingly, morphology, photoluminescence (PL), and cathodoluminescence of perovskite samples evolve differently upon degradation driven by electron beam (e-beam) or by light. A transversal electric current generated by a scanning electron beam leads to dramatic changes in PL and tunes the energy band gaps continuously alongside film thinning. In contrast, light-induced degradation results in material decomposition to scattered particles and shows little PL spectral shifts. The differences in degradation can be ascribed to different electric currents that drive ion migration. Moreover, solution-processed perovskite cuboids show heterogeneity in stability which is likely related to crystallinity and morphology. Our results reveal the essential role of ion migration in perovskite degradation and provide potential avenues to rationally enhance the stability of perovskite materials by reducing ion migration while improving morphology and crystallinity. It is worth noting that even moderate e-beam currents (86 pA) and acceleration voltages (10 kV) readily induce significant perovskite degradation and alter their optical properties. Therefore, attention has to be paid while characterizing such materials using scanning electron microscopy or transmission electron microscopy techniques.status: publishe