1,431 research outputs found

    SUSSA ACTS: A computer program for steady and unsteady, subsonic and supersonic aerodynamics for aerospace complex transportation systems

    Get PDF
    The computer program SUSSA ACTS (Steady and Unsteady, Subsonic and Supersonic Aerodynamics for Complex Transportation Systems) are presented in the final version. The numerical formulation and the description of the program and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, in both subsonic and supersonic flows, are discussed. The mathematical analysis includes completely arbitrary motion. The numerical implementation was limited to steady and oscillatory flows. A more general aerodynamic formulation in the form of a fully transient response for time-domain analysis and the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency-domain analysis is outlined

    Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    Get PDF
    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0

    Group velocity and causality in standard relativistic resistive magnetohydrodynamics

    Full text link
    Group velocity of electromagnetic waves in plasmas derived by standard relativistic resistive MHD (resistive RMHD) equations is superluminal. If we assume that the group velocity represents the propagation velocity of a signal, we have to worry about the causality problem. That is, some acausal phenomena may be induced, such that information transportation to the absolute past and spontaneous decrease in the entropy. Here, we tried to find the acausal phenomena using standard resistive RMHD numerical simulations in the suggested situation of the acausal phenomena. The calculation results showed that even in such situations no acausal effect happens. The numerical result with respect to the velocity limit of the information transportation is consistent with a linear theory of wave train propagation. Our results assure that we can use these equations without problems of acausal phenomena.Comment: 28 pages, 10 figure

    Steady, oscillatory, and unsteady subsonic Aerodynamics, production version 1.1 (SOUSSA-P1.1). Volume 2: User/programmer manual

    Get PDF
    A user/programmer manual for the computer program SOUSSA P 1.1 is presented. The program was designed to provide accurate and efficient evaluation of steady and unsteady loads on aircraft having arbitrary shapes and motions, including structural deformations. These design goals were in part achieved through the incorporation of the data handling capabilities of the SPAR finite element Structural Analysis computer program. As a further result, SOUSSA P possesses an extensive checkpoint/ restart facility. The programmer's portion of this manual includes overlay/subroutine hierarchy, logical flow of control, definition of SOUSSA P 1.1 FORTRAN variables, and definition of SOUSSA P 1.1 subroutines. Purpose of the SOUSSA P 1.1 modules, input data to the program, output of the program, hardware/software requirements, error detection and reporting capabilities, job control statements, a summary of the procedure for running the program and two test cases including input and output and listings are described in the user oriented portion of the manual

    Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    Get PDF
    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft

    J/psi production at RHIC-PHENIX

    Full text link
    The J/psi is considered to be among the most important probes for the deconfined quark gluon plasma (QGP) created by relativistic heavy ion collisions. While the J/psi is thought to dissociate in the QGP by Debye color screening, there are competing effects from cold nuclear matter (CNM), feed-downs from excited charmonia (chi_c and psi') and bottom quarks, and regeneration from uncorrelated charm quarks. Measurements that can provide information to disentangle these effects are presented in this paper.Comment: 4 pages, 3 figures, conference proceedings: the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Quark Matter 2008, Jaipur (India), 4-10 February 2008, submitted to J. Phys. G: Nuclear and Particle Physic

    Simultaneous Excitation of Spins and Pseudospins in the Bilayer ν=1\nu=1 Quantum Hall State

    Full text link
    The tilting angular dependence of the energy gap was measured in the bilayer quantum Hall state at the Landau level filling ν=1\nu=1 by changing the density imbalance between the two layers. The observed gap behavior shows a continuous transformation from the bilayer balanced density state to the monolayer state. Even a sample with 33 K tunneling gap shows the same activation energy anomaly reported by Murphy {\it et al.}. We discuss a possible relation between our experimental results and the quantum Hall ferromagnet of spins and pseudospins.Comment: 4 pages, 4 figure

    Handover Algorithm based VLP using Mobility Prediction Database for Vehicular Network

    Get PDF
    This paper proposes an improved handover algorithm method for vehicle location prediction (VLP-HA) using mobility prediction database. The main advantage of this method is the mobility prediction database is based on real traffic data traces. Furthermore, the proposed method has the ability to reduce handover decision time and solve resource allocation problem. The algorithm is simple and can be computed very rapidly; thus, its implementation for a high-speed vehicle is possible. To evaluate the effectiveness of the proposed method, QualNet simulation is carried out under different velocity scenarios. Its performance is compared with conventional handover method. The superiority of the proposed method over conventional handover method in deciding the best handover location and choosing candidate access points is highlighted by simulation. It was found that VLP-HA has clearly reduced handover delay by 45% compared to handover without VLP, give high accuracy, hence low complexity algorithm
    corecore