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Abstract

| A general theory for steady, oscilla-
tory or fully unsteady potential compres-
'sible acrodynamics around cemplex config-
urations is presented. Usirg the finite-
:element method to discretize the space
‘problem, one oktains a set of differential-
delay equations in time relating the poten-
itial to its normal derivative (on the sur-
‘face of the body) which is expressed in
terms of the generalized coordinates of
the structure. TFor oscillatory flow, the
rotion consists of sinusoidal oscillations
around a steady, subsonic or supersonic
‘flow. For fully unsteady flow, the motion
is assumed to concist of coastant subsornic
‘or supersonic spe2d for time t< 0 {steady
state) and of small o**“u*b*tlons around
‘the steady state for time t>0; the solu-
‘tion is obtained in Laplace's domain.
From the potentizl, the @aerodynamic
\generalized forces are obtained. There-
fore the final output is the matrix of
‘the aerodynamic coefficients, relating
ithe generalized forces to.the generalized
'coordinates, ir the form necessary for
'flutter applications. The theory is em-
bedded in a co"puter code, SOUSSA (Steady,
Oscillatory anéd Unsteady, Subsonic and
iSupersonic Perodyﬂanxcs), which is
briefly described. Numerical results

lare presented for steady and unsteady,
isubsonic and supersonic flows and indi-
cate that the codée is not cnly general,
!flexible, and simple to use but also
jeccurate and fast.

1. Introduction

Presented herein is a general formula-
tion of steady, oscillatory or fully un-
fteady, subsonic and supersonic potential
lacrodynamics for an aircraft having arbi-
trary shape. The objective of this formu-
.lation is to described the time functional

'kelationship between aerodynamic potential

and its normal derivative (normal wash) in
'a form which can be used for computational
:analysis., The finite-element method is

sed for space discretization. The matrix
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of the aerodynamic influence coefficients,
las necessary for flutter calculations, is
|then obtained. Results obtained with the
lcomputer program SOUSSA (Steady, Oscilla-
tory and Unsteady, Sursonic and Superscaic
‘Acrodynamics) are also presented.

i

The analysis presented herein is bhsca
o1 a new integral formulation, presented in .
'Peferences 1 and 2, which incluae complete~
'ly arbitrary moLton. However, the numari-
ical implementation (Refs. 3 and 4) was thus
: far limited to te;d, and oscillatory flows.
:On the other hard, in order to pexform a
'l1ﬂ~ar—svstcm anzlysis of the aircrafs, it
is convcnicqt to use more general zerudy-~
,namzc formulations, i.e., fully transient
iresponse for time-domain ana;ysze a2nd the
,ac*oé;n-m*c transfer function (Laplace
ttransform of the fully unsteady operazer
. for frequency-domain analysis. A general
..ormulatlon for fully unsteady (indicial)

aerodynamics was presented in Refs. & ané 6

5where only very preliminary resulis ware
giver. Consistent with this type of
.analysis, the unsteady contribution is as-
'sumed to start at time t=0, so that for
time ¢<0 the flow is in steady state
Furthermore, consistent with the linezx
flight dynamics analysis, the moticn of
the aircraft is assumed to consist of
small (infinitesimal) perturkations cround
.the steady-state motion.

It may be noted that within tke zz-
sumption of potential aercdynamics, Lrzre
.exists other methods to evaluate tnc aero-
.dynamic loads. Among them, the lifting
‘surface theories, while flexible and effi-
cient, are not sufficiently general. On
‘the other hand, finite-element methods,
‘though sufficiently general for handling
conplex configurations, are limited to
steady flows. In addition, they are usu-
ally quite cumbersome to use and invari-
ably require human itervention to define
ithe suitable type of element (source,
doublet, etc.) to be used.” For oscilla-
tory acrodynamics, the doublet-lattice
method *’? is the only other method, be-

;sides SOUSSA, which can handle subsonic e

oscillatory flows around complex configur-
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ations, while SOUSSA is the only program
which can analyze cscillatory supersonic
aerodynanics.

Finally, for fully unsteady aesrodynam=
ies, several problems have been considered
since the initial work by Wagner (Ref. 10)
on unsteady incompressible two-dinensional
lfrow. While several methods are available
for wings in subsonic and supersonic flow
(see Refs. 11 and 12), no other code, be-
sides SOUSSA, is available for subsonic
'and supersonic f£lows around arbitrary com=-
_iplex configurations for either time or
frequency domain analysis.

The purposc of this paper, is to pre-
isenl recent developmerts on the formula-
ition of Ref, 1. 1In this paper only the
{subsonic formulation is presented in
idetails;the supersonic formulation is
ionly briefly cutlined in Appendix A. For
concisencss, material previously pre-
isented (in particular, the material of
!Ref. 4) is not xepeated herein.

Using the finite-element method to
idiscretize the space problem, one obtains
'a set of differential-delay equatiocns in
.time relating the potential to its normal
derivative (on the surface of the body),
iwhich is expressed in terms of the gener-
alized ccordinates of the structure. For
oscillatory flow, the motion consists of
sinusoidal oscillations around a steady,
subsonic or supersonic flow. For fully
‘unsteady flow, the motion is assumed to
consist of constant subsonic or super-
sonic speed for time t<0 (steady state)

- and of small perturbat?ons around the
steady state for time t>0; the solution
is obtained in Laplace's domain. From
:the potential, the aerodynamic general-
.ized forces arec obtained. Therefore
‘the final output is the matrix of the
aerodynamic coefficients, relating the
,generalized forces to the generalized
‘cocrdinates. The theory is embedded in
a computer code, SOUSSA (Steady Oscilla-
tory and Unsteady, Subsonic and Super-

sonic Aerodynanics), wnich is briefly

S
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where P, is on the surface of the body,
'Z ,N is the outer normal. -

=0/ 2

with a-" 1 -M%and

R=[x-x2+ 0 -v2e@-202] 2 @

! Wg :
gt TR

-

2=zt T=q Pt

‘while

= B

8 =_M’(x f_x.a) +R

(4)

(5):
. 1
!is the time necessary for a disturbance_gp!
_propagate from P to P,. In addition, Ty

‘is the (open) surface of the wake (kpown

i £rom the steady state solution) and A¢ is
‘ the potential-discontinuity across the :
~wake, evaluated in the direction of the i
‘normal, i.e.AdPEd "4 if the upper nor-

‘mal is used. It shéuld be noted that the !
wvalue of .A¢ is not an additional unknown,,

described.
for steady and unsteady, subsonic and
supersonic flows and indicate that the
code is not only general, flexible, and
simple to use but also accurate and fast.

2. Eouation for Velocity Potential

The subsonic aerodynamic formulation
used in SOUSSA is briefly presented here.
| The supersonic formulation is given in
Appendix A. Assume the flow to be an in-
«finitesimal perturbation from the steady
istate flow. Then standard use of Green's
|

‘function method applied to the eguation
.0f the velocity potential yields, after
|11nearization, the following integral
iequation '’2%,

OF POOR QUALITY

Numerical results arc presented
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! since = 2 ’
! ad (PI T) = Aq'(PTEo T "n) (6)'

‘where N is the nondimensional time neces-
i’ sary for the vortex-point to travel (with-|
! in the steady flow) from the point, FTE !
(origin of thé vortex-Iine at the trailing
edge), to the point P. For small-pertur-
bation steady flow, II' is given by *®

| S e
g' n =8 2(x-xTE)/M (7)'
Equations (1) and (6) fully describe

. the problem of linearized unsteady sub-

| sonic potential aerodynamics around

| complex configurations. In order to’'solve

| this problem, it is necessary, in general,

I to obtain a numerical approximation for
Eq. (1). This is obtained by dividing the

i surface of the aircraft into Np_.’quadri- '

! : i
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lateral elcments j, (which are described
in terms of the corner points by use of
standard finite-element interpolation

. technique*) and by assuming ¢ and ¢ to
be constant within each elemenc:

v, T - e)—-\!' r-o.)

W — —

; e (8)!

where q:h(l' ) and Ohﬂ' 0) are

time deperdent values of ¥ anﬁ ®» at the
centtoid Ph of zh at the time T~ eh (where

is the disturbance-propagation time
f P, to B))

| Next consider the integrals on the
wake. In orcder to facilitate the use of
Eq. (6), it is convenient to divide the
wake into strips cdefined by (steady-state)
vortex-lines emanating from the nodes on
the trailing edge. The strips are then
divided inLo‘V elements z (w) with nodes

along the vortey lires. The potential
discontinuity is assumed to be cons-
tant within each elenent

i
M(P,T -e)' M’ “ =0, ,!
|
!

,where

, :

fat the centroid ﬂ?N) of the element SQML

on the wake at time T- Bn (where ‘e is
e propagation time from p“N) to B,J.

“Note that according to Eq. —6)

so, M= o) o)
* where me=m(n) identifies the trailing-
edge point whick is cn the same vortex-

. (\V) |
.line as the point Pj |
is the time necessary for the vortex- i
point to be convected from the traLling |
.edge point P(TE) to the wake-point Psv . :
It may be worth noting that A® UE) !
. 'o" - . '
. hu °hx , where hu and hd\identify |
. the upper and lower trailing-edge nodes

on the body corresponding to the mth
' node on the trailing-edge. 1

Ao (l’ 9 ) is the value of A

(10)

Furthermore, nn

In SOUSSA ¢ -Qm is approximated
L

h
u P
with the value evaluated at the centroids .

- of the elements adjacent to the trailing
edge. This is reasonable in view of the

" * The equatlon tor the clements are of i
the type P = +£P1+n§ +gnr3 (-1< g :
< 1;-1<n< 1) This type of element is '

called hyperboloidzl 2lement and is
described in details in Ref. 4. !

—— - . s

: and assuming P,IP
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Kutta condltion.j»n iis then evalLatcd

from the centroid, as ¢

W) .
n -02(“ - x~ ¥YM

w;th the above approximation, 1t is
possible to write ©

E .
20 ( 61) 2 S&h (12)
where S, = 1‘5nh=“”' if h identifies

the upper (lower) point Fh on the body -

corresponding to the point FON) on the

wake (i.e., near the point ﬁggs.
the troiling edge), and snh=0 ‘other-
wise. :

(1), (8) ara (9)
, one obtains

Combining Ecs.

i
,m=}“a.h h" Sin) (13)

o+ ;ﬁclh B
| +22F|n Soh

+):‘[,¢':5I"snh ®p 0-0;,-2)

)+ZDIh¢h(r ¢y
h“"ei -nn) '

o m—

where

and

h I- "
puspy,

Using the above mentioned hyperboloidal
quadrilateral elements the coefficients
th, cjh' an and Gjn are evaluated

analytically with the expressions given
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in Ref. 4. The bdé:‘fié'&‘é‘».é‘é"b;;faze e
approxinated as Djh" jhcjh where

Ryp= [74-By.

Next, taking the Laplace transform with

zero initial conditions of Eq. (13) yielas*

T

-..‘--q- .. -

where 3,, and "h are thc Laplace trans-
forms of" "’h and ¥}, 'while

: ‘7“ b (c 'h+s Dn.) e~>%h :

- -S(®in + 11
B -tony s,
: 'i;h -B’.h oS0 (18)

. whereas S is the nondimensional Laplace
: parameter.

Tyou puy. i)

“an'

o}

i3, B :m'xdar) Condition

The derivation of the boundary condi-
tion is given in details in Ref. 13. Here
{ the derivation is briefly summarized.

! The boundary condition obtained by impos-
* ing that the velocity of the fluid and

: the velocity of the body, ¥ , have the

+ same components along the Tormal to the
surface of the body. This yields

L= (F =UgpT ) ‘n (1) U;,;, - (19)

- e e — S > e o

i' where fi(t) is the instantaneous normal
to the surface of the body. The unsteady
part of the boundary conditions (neglect-
ing high order terms) is given by

i

K V-i-u?{-'l'. (20)

"‘q;

with. Ap 7= ! ¥ .5

l;l x?:zl . 'a; ]

where d is the displacemunt of a point
of the body. Expressing d and V¥ in
terms of the generalized coordinates
of q as

N.
o

472, 9, 1,69 e

—_—

n=]

" * For oscillatory aerodynamics, scttm'g

o (1) = .37 and v (1 = Fel®T
yields the same equation with §=iQ

ORIGINAL PAGEIS 22
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- 1 - S 1
i b2 9, 770 o s prenent size
'; and :
£ e R 5
A RN ) (22)
ns]
' one obtains, in the Laplace domain ,
V= 1_2 .'_ﬁn o (23)
n=1[%

. ——— —..T . ozx - —— .°l.x qn
!L |a) x5yl \og! . agz

’where s = Ssc&/g : Equation' (23) gives the
fdesired ralationship hetween normal wash
jat any point and th generalized coor-
!dinates q, -

]

{4. Pressvre and Generalized Forces

i In order to complate the formulation,
.the procedure for the evaluation of the

i aerodynanic pressure and the generalized
tf.ox:c:es is presented in this section. :

First, consider an averaging scheme {
which impoqes that the value of the
potential .;, at the node p is the

laveragc of tln. valuecs of thé‘ potential ’
tat the ccntroxds cf the elements sur-
:rounding Pk In other words

e, 1= IE) (2] (24)

vhere [E}}] is an averaging matrix
| defined as

& . .
£, " —— f P €%
kh N(") k h’
(i.e., if the P‘ is one .of the corner
points of the eclement }:h) and

(25) I

Ekh =0 othervise (26)

In Eq. (25), N(k)’_is the number of
elements which have P;‘ as onc of their

corner points. Having evaluated the
values of & at tac four corner points
of each quadrilatcral element, the po-
tential is cxpressed as

VIDRIRBROGIE 57 N,

(27)

=Ydh! o
¢=zo! N'h(P?

B T e
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‘whera N! are the first-order global shape-
functions obtained by assembling local

shape~-functions of the type |

NE =L +5)men,) (28),

M =, |

!

=+ 1 and 1, =+ 1 are the loca-
tions of the corners¥ ~of the element .

———

where

(g and 7' are the coordinates over th® 5

elément) so that {

IN! ;

T 1 S (29).
K-}kl 287

i
i
vhere ='=g; 22 = 1. |

_— — e e o

The pressure coefficient may be evalu-
ated from the linearized Bernoulli -
"theorem as i
i

c =-2(ﬁg_‘?+l
P aT B

v i ) (30)

RSN 5

Expressing Vé in terms of the tangential
derivatives of ¢ and neglecting the con-
tribution of the norrmal ccmgonent, the !
pressure coefficient is given by

2 ; |
c .-2(3_19+7 (R0 ;
P s\Mar azl (31)
&F,.—za# )
b 1

whers X% are the contravaniant base
vectors, with 3¢/3z% given by Eq.(29).

; Next consider the generalized aero-
dynanic forces

1 Q= @_-q epie M dxy (32)
where =
K W e
_ 2 P Yo (3-5)l

is the dynamic pressure.

By assuming that the pressure coeffi-
cient "¢ is constant within each element
(consistlnt with the assumption made on &),
Eq. (32) can be expressed as

J

-

NTREEE TR IS E (34)

———

-———
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where

where 5], and 32 are the basc vectors of
the elément £ .-

h

.5._SOUSSA

The above formulation is imclenmented
in the ceomputer program SOUSSR (Steady,
Oscillatecry and Unsteady, Suksonic and .
Supersonic ferodynanics). The program
is an improvement of the procran SOSSA
presented in Ref. 4 and thercfore re-
tains 211 of the basie features analyzed
in Ref. 4, 1In particular tic program
besides being general and flexible is
also very simple to use. ' The only inputs
ate the location of the corner points of
_the quadrilateral elements,ihe Mach nunber
and the reduced freguency. The wake is
autematically generated. It should be
noted that a considerable improvement
with respect to S0SSi"is that supersonic
flows are treated exactly the same way
as the subsonic ones: in particular
diaphragms are not used in SCUS5A* There-
fore the basic simplicity in vse for the
subsonic flows is rccained ia supersenic
flows as well., An additional feature

which éidn't exist in SOSSA is the evalua-
tion of the aerodynamic influence coefll-
clents, Therefore it may bz worth it to
2dd a few comments on the computational
implementation of the formulation pre-
sented above. (Details for the following
expressions are given in Ref. 13.) Note
first that the relationship between nor-
mal wash and generalized coordinates,

'Ey. (23 ) may be written as*

.@m'q.

S T

In Egs. (36) to (43) compact matrix
notations are used. Vectors and
matrices are underlined. Tildas in-
dicate Laplace's transform or equiva-
lent operation.

1€

where

-~

v

W e e W ——— ————

(36)

(37)
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= {) (38)
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and E‘1’ a matrix implicitly defined by
Eq. (23). Furthermore Lg. (16) may be
rewritten as

(39)

§ 02,
‘u
1<

whereas the relationship between pressure
coefficient and potential may be written
as

-(40)

1¢2

where E(B) is obtained by combining Egs.

(24), (27), (29) and (31). Finally (sce
“ Eq. (34))
@ =q M4 2 (41)

= P

-

or , combining Eqgs. (35),(39),(40) and (41),

3 'qmi (42)

" where the matrix of the aerodynamic influ-
ence coefficients § is given by - .

= (43)

e R ROR® m@ RO

Note that fi‘Y) ana E“’ depend upon
the modes H_(g” ), whereas §(2) and

j§(3’ do not. The separation of M into
node~-dependent matrices and mode~in-
dependent matrices is particularly
useful for automated structural design
in which the same geometry bnt different
modes are us2d in each iteration, In

addition &‘2) is the Bnly matrix which
depends in a complicateé way upon the
complex frecuency S. EKowever once the
coefficients of Egs. (14) and (15) are
evaluated, the evaluation of ,‘2'(2)
quires only the combination of this
coefficients according to Egs. (17) and
(8) and the inversion of the matrix ¥
(see eg. 39). This is particularly
useful for the evaluation of the acro-
dynamic influence coefficients for
various freguencies, 235 needed for
instance for flutter analysis. An
exanple of the time saving obtained
by using the two above features is
given in the following section.

‘6., Numerical Pesults

re-

Typical numarical results obtained with
S0USSA (Ref. 14) are presented in this sec-
tion. Figure 1 shows the sectional lift
coefficients at various stations of a wing~
body in steady subsonic flow compared
against experimental and theoretical

s > i 500 S S S A A ol SRis e e B )

: fuselage.

. 4x7x7 elements on the whole wing.
* results are identical with the ones

s st vis e S St A e faiion o S S os

results of Ref. 6 and 15, The results
iwere obtained for M=0 and a rcctangulay
‘wing with chord c=l, gnd span b=6 thick=~
’ness T=0.09 and a _=6" . The body is at

zero angle of attack with overall length
of 5 chords (forcbody with length 5:20.
fuselage length Ly=3). Note that ;

_the fuselage is closed at the end by a
circular plate. In addition, a flat wake
is emanating from the wing trailing edge
and a cylinérical wake from that of the
fuselage. Figure 2 shows the convergence
analyris of sectional lift of Figure 1 as
a function of the number of elements. The
computer tire uvwsed for cach case is-also
indicatcd. TFigures 3 and 4 present the
lift and morment coefficients of a rec-
tanguler wing in supersonic unsteady
flows with aspect ratio. AR=2, c=1, b=2,
7=0.001 and complex reduced freguencies
kC:-O.2+il.0, 0.04i1.0 and +0.2+1)..0

for Mach number anh to 2.5. The re-
sults are compared with those of Ref., 16.
Noted tha% in contrast to Ref. €6, the
present rotrhod does not require the use
of diaghragms. Figure 5 presents a
wing='cdy-tail configuration in fully
unsteady “low with specifications of the
gecmetry similar to that of Fig. ).
However, a n~.izontal tail is added with

, chord c=1 and b=6 which is stationed 0.5

' chords above the center line of the

The complex reduced frequency

. was X _=0.1+i0.5, No existing result is

. availfible fer comparison, for, as men=

tioned ahbove, the present method is the
only existing one which can analyze fully
unsteady flow. The result is presented
to demonsirate the generality of the
method and its ability to handle fully
unsteady flow problems. Figures € and 7
presents the lift and moment coefficients

. and their corresponding phase anrngles for

a rectangular wing oscillating in plunge
and pitch in subsonic flow with AR=2,
t=0.001, Mach number H=0. and

The

.

cbtained with SOSSA. However, consider-
.able time saving was obtained in the
respective frequency and mode calculations
by the decomposition of the matrix B into
freguency and mode dependent matrices
{see =qg. (43)). he
tained in 44 mins. i.e. 82.5 sccs. for one
aerocdynamic coefficient and one frequency
(since four coefficients and eight fre-
guencies have been considered). Note
that the time for one single cocfficient -
and one single frequency (if evaluated
independently) is about 13 minutes.

Tables 1 and 2 contains the general-
ized forccs for an AGARD wing-tail con-
! figuratior in guasi~stecady and oscilla-
| tory flow compared with several cxisting
. metheds (Refs. 17 to 21). While Table 3
included the generalized forces for the
‘ sare configuration in fully unsteady
flow (complex ireguency). For all the ré=
sults the standard AGARD geometry (des-

o —
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cribed f5r instance in Refs, 18 and 19)was
usad. Tiis consists of two swept tapered
lifting surfaces. The first surface has

¥ p"0 and X,..=2.25 at y=0 and X p=2.75 and

.LE =
Xpp®3.70 at y=1 and is located at z=0. The

‘second surface has xbg-2.70 and XTE-4.00
;at y=0 and X p=3.90 and fTE~4.25 at y=1
rand is located at z=,6. All the resulte
prascribed here were obtained using 4x7x7
!elcmonts on each surface. Results obh-
itained with 4x5x5 elenents indicate that

i convergence was attained. The results are
Iusullly in excellent agreement with those
{of Refs. 17 to 2L.° :

—

|
.~ 7. Conclusions =

A general formulation and computer
program for the analysis of steady, oscile-
latory and unsteady, subsonic and super=—
sonic acrodynamic flows around complex
configurations have been presented. The
final output of the code is the matrix
of the aerodynamir influcnce coeffi~
cients for fluttcer analysis to be used
;g: instance in ihie program FCAP (Ref.

It should be noted that, while there
exists ceveral methods to analyze the
problem of unsteady conipressible flows
for complex configurations, the present
method, embedded in the computer program
80USSA, is unique in the following
aspects:

l. It provides a completely unified
approach for steady, oscillatory
and fully un: teady, subsonic and
supersonic aei>dynamic flows.

2. It can be applied to =~rbitrarily-
complex configurations. Wing-boiy-
tail configurations in fully ur-

. steady flows have been presented.

3. It is computationally extremely
general, flexible, efficient and
above all, accurate. The elimina-
tion of diaphragms in supersonic
flow improved considerably the
sigplicity and efficiency of the
code.

4. SOUSSA is the only existing pro-
gram that can analyze fully unsteady
complex-configuration potential
aerodynamics in subsonic or super-
sonic regimes. It is also the only
program capable of handling oscil-
latory supersonic aerodynamics for
complex configurations.

5. In contrast to existing methods,
which in many instances requires
extensive user's background in
aerodynanics and familiarity with
the specific method, the present
code requires very limited human
intervention and is extrcmely ecasy
to use.
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6. Flutter and optimal design analyses
.+ reguirc evaluation of the aerodynamic
{ influence coefficients for several
i frequencies and mede shapes. With
‘ the unique features mentioned above,
| (.e., separation of the acrodynamic
{ influence coefficient matrices into
frequency and mode dependent and
! independent matrices) the computer
| time that normally would have been
i required is drawatically reduced.

! .

e - s we

Apperdix A

In this Appendix the formulation for i
the supersonic case is briefly outlined. i
For conciseness, only supersonic trailing |
edges ora considered so that the contribu-;
! tion of the wake can be ignored. (In '
, SOUSSA diaphagme are not used and there-
' fore tha supersonic wake is treated as
| the surconic one.) Under small-perturba-
‘tion assumption, the Green ihcorem for
, potential supersonic flow is given by -

"5 (P .9"‘ "ne" H
; 2n?(P.:T)- :{[;:a'(l\” Tl/l )-E-d!:

* _.a;‘(la-]"” g [¢?‘) 2 (.__"_.)a 5

ANE\ R

é'ﬂ”n([i"q}‘]%' [3:;]9") ; :':fdz. s
( 0

i
1
i
(A:l)i
4

T - :
ywhere vy = S is the conormal

3N ANE_
derivative .(Ref. 4) ) is the conormal
wash which is prescribed by the boundary
conditions, and °

X = w/o's Y=yA'Z=2/s .'r-go'a"/s (A.2)
R : o :
R-[(X-X.)z-(Y-Y.)z—(z-z,)z] /2 (A.3)

whereas -

H=1for X, - x>[(v Y 22,7 ]'/ ¥

g . s —— e

Furthermore,

io(A.4)
= 0 for X, -Xs[(Y-Y.)2 + CZ-Z.)2]V.2( .
and - l
. et !
[]. [] (a.5) !
7-¢* :
with - ;
. |

0" = M (X, - X) 2R (A.6)

Following the same procedurec used for
the subsonic case onc obtains

. e . —————————— W R W
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om = oo [5 00 ve a-o0)

h ' + o - (“07)
R [3, 0 -0 +9, 0 -850 -

L] . £ . . -
+ Ib: D"" [':’b (r -9"‘)‘05 (T -cih)]

(A.8)

1 riH 3R gy l'--.!
aN--h o, =p,

The definition of ga-h- and oé-fh s
discussed at the end of this appendix.

Finally, taking the Lzplace transform
of equation (26) results in

[t ] = o ~y (A.9)
¥ih) {a} [z”'] {w "}:
where .. . ‘
V’ = [ . ' -SQ+ -59- -
1] = fop = Cipte PesT )

5 + -
SO Ry eihﬂ
: [i;h] = t[a;-h-'("se?'; + G-SG'ih ) ] (A.11)

Equation (A.9) yields the akEsdn ﬁ(z)

1 »

-t

yiclds no problem for the elements
completely outside or completely inside
the lach forecone. MHNowever for the

; elements partially inside the Mach 4

, forecone, a special definition for 9';
' and fﬁb

must be used: note that '9';
‘ and Q.hreprelont the two propagation”

times for the discturbances cmanating from
he element 2y to reach the point P..

Therefore for’ elements partially inside
the Mach forecone, @,, and @, are most

!
lpgropriately dcfincdll}from a 'physlcal
point of viaw) as the propagation tines
from the centroid of the portion of the
element § intersected by the Mach

forecone, ‘to the control point Fj.

It should be noted that with this

definition of 28 and @., , supersonic

! £10ws can be tredted exaé?%y the same
way as subconic flows. For instance

a wing with superconic levding edge is
solved by using both sides of the wing °*
simultancously. Also for wings with™
partially supersonic leading edges the
usc of diaphragms is not necessary.

. -

+ use of diaphragms in the program SOSSA
was cunbersome, especially ifor wing-
body~tail and non-coplanar surfaces
analyses. In the program SOUSSA there
is no difference in the treatment of
subsonic and supersonic flows.

- . Vo
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NOMENCLATURE

spceé of sound in undisturbed flow
reduced frequency, wi/U,

corplex reduced freguency
refexence length

Mach number, U, /a,

normal to 28

purbher of wake elements in
x~direction

pusber of clements in x-direction
on half wing

nunber of clements in y-direction
on half wing :

point having csordinates (X,Y,2)

control point, (X,,¥4,2,)

defined by Eg. (3)

nondinensional complex frequency
(for Laplacée Transiorm)

norndimensional time, %y.(2)

velocity of undisturbed flow

nondinensional space coordinates,
Eqg.(2) .

discontinuity of ¢ across the wake
time £Qr a disturbance to propagate,
fron P to P,, Eq.(5)

convection time of wake vortices,

Eq. (7)
surface of body
wake

surface of

nondimensional velocity perturba-
tion potential
nondimensional normal wash

. —— — - ———
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Figq. 1. Sactionel lift coefficicnt dis- 3
j tiibutioxw for & wing=body confligura- 0 o
tion with o =5 a,=0 , M = 0 and
NELEN=388. " Comparison with results of Laschka (Theory) —x = 0.0+11.0
_Rofs. 6 and 15. e O,kc- 0.2+4i1.0
, |Present dethoa (O k.= 0.0+11.0
NI ® k m=0.2+i1.0
ARG(c,)
(]
© NELEM=200 (CPU=13 nin.) § -60° |- [0
© NELEM=264 (CPU=18 min.) >
.4 & NELEN=1388 (CPU=42 min.) > a
(o] Y T
E -90. L - 1
1.0 1.5 2.0 2.8
. : ’ M...
0 0.25 0.5 0.75 1. Fig. 4. Moment coerficient, CM s Versus
2y/b ¥, for rectangular wing osciliating in |

Fig. 2. Convergence study of Fig. 1

with NELEM=200, 264 and 388.

pitch, fOl' ]\R"?, t-°o°°1' N -el N,"?-

Comparison with results of * Ref

Y16,

e —

“3-0
Jae ‘ upper © real part
Laschka (Theory) = k. =0.0+i1.0 Surface o imaginary part
4F — c
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© k= 0.2+i1.0
2
)
Lower O real part
Surface V imaginary part
n 1 1 - g |
20— — — Befs 25 y 73 1
) ; : x/e
ARG(Cp)
o9 Fig. 5a. Pressure distributions at 2y/b
0 V@=ﬂ =0.78 wing spanwise station of a wing-
body-tail configuration in fully un-
steady pitching mode with pitch axis
' 1 . at wing mid-chord. Complex frequeancy
~20 1.5 2.0 2.5 kc-o.hil.s.span b=6, fuselage radius
1.0 - - 3 3 r'=0.5, thickness ratio 1=.09 ,total
Pig. 3. Litt coefficient, C, , for number of elements NELEM = 388,
rectangular wing oscillatind in pitch,
\dt.h M-z, 1-0.001, N “80 Ny..’- Com~
parison with results 8f Ref¥ 16.
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SrADLE )

Goneralized Aerodynanic Torce Coefiicionts
for ACAMD Ving=Tail Interference M=0.0,42/100,.6

SETEsaT B % 2.5 0.0 % o 1.8
| Generatized anpe s Sy - '.;*-' -
recce tn o == T T T B S B TG s
‘Wing twist 3.} | ~0.087) LATL0 | -0.2035 | 0.1552] Refs 17
= “0.0723 CelG30 | =0.1644 0.1702 Ref. l..
-0.069% | ©.0679 | ~0.1592 | 0.1335| Present
Wwing wing twist | 2,1 | 0.26:1 | ©.3004 | 0.2147 . 0.4345]« Ref, 17
., berding 0.2776 | 0.37¢¢ | 0.2243 | 0.3974| Ref. 18
£ : 0.2232 v.2607 0.1355 | 0.7684 Present
Tall roll | Wing twist|] 3,1 0.061% 9.00¢4 | ~0.0615 | 0.1245| Ref. 17
C “0.06.3 | ¢.0247 {~0,0343 | =0.0432| Ref. 10
: 0. 0556 | ~0,0045 | <0.0489 | 0.0163] Present
qall piten] wing swise | 4,3 |-0.0206 | n.002s §~0,0232/] 0.0108] Ref, 17
- . “0.074% | 0.0371 | ~0.0460 | 0.0492]| Ref. 18
«0.0154 | -0.0220 [ =0,0182'| 0.00°0] Preseat
wing twizt] wi 1,2{ 0.0 0,058 | ~0.2360: ] ~0,0507] Ret, 17
bendlng 0.0 0.,044¢ 0.1222] ~0.0387 ref. 18
0.0 g itz ~0.21G8 | <0051 Punqt
Wing Ming 2,2| 2.0 0.3042 | ~0.2:70 | 0.2003] Ret. 27
. benlding bending 0.0 0.196) 0.2305 | 0.2147] Ref. 10
= 0.0 t.1528 | =0.3317 | 0.2008] ¥Present
Tad) roll | wing 32| e.0 ~0.0398 | <0,2331 | -0.0037] wef. 17
v E bunding 6.c pe20 | ~o,0496 1 0,00521 Ref, 18
' 0.0 315¢ :—u.t-:uc 0,01 Present
T4l p.t+h] Wing 1 a2 o0 =0.¢138 | =0.0192 -o.oouf Ref. 17
bending 0.0 -0.04%9 | =0.0573] 0.0051] Ref. 18
0.0 ), 0304 | ~0,0102] ~0.0042] Present
Wing twist| Tail rell [1,3] 0.0 ~0.0924 | =0,0005 | =0.0031] Ref. 17
: : : 0.0 0.0 ~0.0000 ] =0,0004] Ref. 18
0.9 -0,0084] ~0.0005] #0,0010 Present
Wing Tail roldl | 2,3] 0.0 “0.0019 | ~0.0026 ] '=0.0052| Ref. 17
= bending .0 €.5002| =0.0015| ~0.0006| Ref. 13
- el 0.0 __ ] ~0,0002] ~0.0022] ~0,0036] . Present
Tail Roll |7vi) Roll | 3,3 0.0 v.oagay | ~0.3150 | 6.4215 |, mez, 37
. : 0.0 0.2549 | =0.2974 | 0.4322 | net. 18
0.0 0.3575 | =0.3620 ) 0.3877 Present
Tail Roll |7ail Piten | 4,37 0.0 0,2519 | =0.2115 | 0.1825 |  met, 17
C c.0 0,2255 | =0.5000 | 0.4945 | pet, 18
0.0 ©.2470 | -2.2062 ) 0.1454 Present
7ail Piteh |Wing Twist 2,4 |-0.0033 | o.roos | ~0.0007|-0.000¢ | per. 17
. -0.0001 ©.0201 | ~0.0020 | ~0.0001 Ref. 10
~0.0008 | -2.0015 | =0.0044 [~0.0002 | present
. Wing ;
Tail Pitch 2,4 |-0.0049 | -5,0000 | ~0.0456] 0.0002 | Ref. 17
bending 1 """ | 00002 | -2.6021 | ~0.001¢ | 0.0007 | Ref. 18
] =0.0014 | -0.0022 | -0.0120 | 0.0002 | Prescat
7ail Piteh | 7ail Rodd | 3,¢ | 0.6345 | o.co7s| o.5320 0.7ms | Ref 27
. & 0.6,75 | 2.vi26 | ©.3275| 2.0701 | Ref. 28
0.6400 | 0,7223| 0.3916| 0.7766°| Present
Taid Pitch | Taid Piteh | 4,44 o0.1066 | c.56111 -0.0452( 0.6442 | Ref. 17
0.7205 | 1.4759] =0.0264| 1,604 | Ref. 28
0.1590 | ©.4281 -0.2496) 0,5354 | Present
Wing Tvist | wing Twist | 243,]-0.2470 | ©.5:02 | -0.5713] 0.6274| Ref. 19
& Tail Rolll & Tail Roll| )+3 | ~0.1156 | ¢,4253 | =0.5066) | 0.5346 Present
Wing Twist | #ing 2¢4,| 0.2408 | c.s302|-0.2262| 0.5084 | Ref. 19
& Tail Roll londh\z s |143°( 0.2027 | 0.4990 | ~0,2300| 0.522¢ | Preseat
Tail Piteh| 5
Wing Twise | 143, 0.6402 | c.c201| 0.3552] 0.7280 | Ref. 29
ing & | & 7aid mo3r| 2+4’ | 0.6351 | 0.c375| 0.2332] 0.7243 | Preseat
7all Pitch " .
‘::z wing 244, | 0.2619 | ©.7565 | -0.45¢0| o0.9729 | Xef. 29
y ing & |_Bendtng & |'2¢4' | 0.2694 | 0.c206 | -0.5094]| 0.7307 | Present
1 Piteh | Tail piccn :
= bk oR 1S
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TADLE 2

Cencralized Acrodynamic Force Cocfticients
for AGARD Wing-Tail Interference M=3,0, 2/L+0.6

. . s
Ceneralized | Couvsed by ! L TR | Method
Force in Pressure In 1 ZU_‘ % =

: i= = . - 0.031 71,1462

H!:t_xg,tux t ing twist 2,2 e tory :J..H.

: 0.1172.] 0.1318

. . .

% Wing bendingiing twist 2,1 0.3801 |.0.0290 |- Ref. 20
0.2710 | 0.1207.] Ref. 21
- 0.3387 0.0224 Yreseat
Tail roll Wwing twist 3,1| 0.1253 ] 0.055%) Ref. 20
| : : ~0.0137 | o0.:024) Res. 21
s E J=0.3566 | ~0.0315] Present
Tail pitch |wing twist | 4,1] ©.0856] 0.054)| Ref. 20
. = : = 4 . ]-0.0065) 0.0317| Ref."21
. : ; ~0.037¢| ~0.0506| Prescat
Wing twist [wWing bending] 1,2|-0.074¢'| 0.0302:] Ref. 20
N = . : -0.0234'] o.o0poll Ref. 21
-D.042 0556

Wing bending|Wing bending! 2,2} ~0

7ail roll [wing hending] 3,2] -c.0421| ¢.ced5| mesf. 20
. e ¢ ] =0.0715] -0.9012]| Ref. 21

" 0.035¢C 0.6308] Prasent

Tail: pitch |Wing bending] 4,2] ~0.04C4 5.0485 Ref. 20

8 ~0.0cC2 £.0104 Ref. 21
0,0338; -0.0606 Present

Tail roll |T2il roll .3,3] o.0263] o0.2522] Rez. z0
- . : ., 0.0700] 0.3170] PRei, 21
0.0402 ] .0.2838] . Present
Tail pitch " |Tail roll | 4,3| o0.0072)° o.'zz.:-»: Ref. 26
e 0.03G6¢ s.z2208 Ref, 21
0.02€3 0.2240| Present
Tail roll  [Tail piteh | 3,4 o0:4517] oc.1632] mec: 20
; 1 = 0.4¢310 0.2)68 Ref, 2)
0.5000) 0.1874| Pres=nt
Tail Pitch Tail pitch J 4,4 v.2v65) 0.2588( Ref. 20
: : . T 0.31¢2) .0.3010 Pef. 2]
: e = 0.3724] 0.2354| - Presant
. TABLE 32
Generalized Aercdynanic Force Cocflicients
for AGAPD Wing-Tail Interferecace 4=0.8,32z/L=0.6 \
: = =
: Ko = -p.2 & 41,5 Kee o0 231 c) K= 0,2 + 43¢
Ceneralized Causcd by 43 ——— Qr’-"‘-— e “Q:‘: “‘"'j‘ g Lol o = o
Force {a Pressure in 2 1 14 - 3 13 ij =034
Wing twist |wing bendind 1,2 [-0.1208 | -0.045% | -0.1467 [-0.0242 | -0.12408 [-0.0033
i Wing bending |Wing bending 2,2 | ~0.2984 | 0.993: | -0.3783.] 0.2956 | -0.3903| 0.2536
: Tall. roll Wing® bending 3,27 -0.0641 ~0.059% | -0.0311°} ~0,0224 | ~0.0251 |-0.0120
i Tail, pitch Hi'ng bending 4,2 |-0.0158 -0.0395 | -0,0148 |~0.0042 '~0.0122|-0.0028
TABLE 3b
2 Generalized Aerodynamic Force Cocfficients
£ for AGARD Wing-Tail Interferonce M=3,0,82z/L=0.6
—rm 20, Sei1.6 ] Wes 008535 o= 0.15+i1.5]
| Ceneralized Causzed by 1,3 Q' Q; g Q7 Qi’ Q'Lj Qij
Force in Pressuzc io ¥ 13 b] i) J
wing twist |wing twist | 143,/-0.0208 | 0.4050" | 0.0230 | 014004 | 0.0464] 0.3933
& Tail roll | & Tail roll| 143 ¢
Wing bending | Wing twist | 244, 0.2373 | 0.2855 | 0.2654 | 0.2060 | 0.2872] 0.2058
& Tail pitch | & Tail roll| 1%3° 4 . i
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