General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

FULLY UNSTEADY SUBSONIC AND

SUPERSONIC POTENTIAL AERODYNAMICS

FOR COMPLEX AIRCRAFT CONFIGURATIONS FOR FLUTTER APPLICATIONS
by

Kadin Tseng
and
Luigi Morino

Presented at

AIAA/ASME/SAE 17th Structures,
Structural Dynamics and
Materials Conference

Kadin Tseng* and Luigi Morino**
 Boston University
 Boston, Maszachusetts

Abstract

A general theory for steady, oscillatory or fully unstaady potential compressible aerodynamics around complex configurations is presented. Using the Einiteelement method to discretize the space problem, one obtains a set of differentialdelay equations in time relating the potenitial to its normal derivative (on the surface of the body) which is expressed in terms of the generalized coordinates of the structure. Eor oscillatory flow, the motion consists of sinusoidal oscillations around a stoacy, subsonic or supersonic flow. For fuliy unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time te 0 isteady state) and of small perturbations around the steady state for time $t>0$; the solution is obtained in Laplace's domain. From the potential, the aerodynamic 'generalized forces are obtained. Therefore the final output is the matrix of the aerodynamic coefficients, relating the generalized forces to the generalized coordinates, in the form necessary for flutter applications. The theory is embedded in a compuier code, SOUSSA (Steady, Oscillatory anc Ensteady, Subsonic and Supersonic perodynamics), which is briefly described. Numerical results lare presented for steacy and unsteady, isubsonic and supersonic flows and indicate that the coce is not only general. flexible, and simple to use but also feccurate and fast.

1. Introduction

Presented herein is a general formulation of steady, oscillatory or fully unsteady, subsonic and supersonic potential acrodynamics for an aircraft having arbitrary shape. The objective of this formulation is to described the time functional relationship between aerodynamic potential and its normal derivative (normal wash) in a form which can be used for computational analysis. The finite-element method is used for space discretization. The matrix
of the aerodynamic influence coefficients, as necessary for flutter calculations, is then obtained. Results obtained with the computer program souess (Steady, Oscillatory and Unsteady, Suisonic and Suparsonic Acrodynamics) are also presented.

The analysis presented herein is based on a new integral formulation, presented in. References 1 and 2, which includes co:.:pleteIy arbitrary motion. However, the numarical implementation (Refs. 3 and 4) was thus far limited to steed \bar{y} and oscillatory flows. On the other hard, in order to perform a linear-system analysis of the aircraft, it* is convenient to use more general eerodynamic formulations, i.e., fully transient response for time-comain analysis end the aerocynamic transfer function (Laplaco transform of the fully unsteadiy operazor) for frequency-domain analysis. A general formulation for fuily unsteady (inciciai) aerodynamics was presented in Refs. 5 and 6 where only very preliminary results were giver. Consistent with this type of analysis, the unsteady contribution is assumed to start at time $t=0$, so that for time $t \leq 0$ the flow is in steady state. Furthermore, consistent with the linear flight dynamics analysis, the motion $0 \tilde{E}^{-}$ the aircraft is assumed to consist of smali (infinitesimal) perturbations exound the steady-state motion.

It may be noted that within the \quad : sumption of potential aercdyramics, firexe exists other methods to evaluate tine aerodynamic loads? Among them, the lifting surface theories, while flexible and efficient, are not sufficiently general. On the other hand, finite-element methoas, though sufficiently general for handiling complex configurations, are limited to steady flows. In addition, they are usually quite cumbersome to use and invariably require human itervention to define the suitable type of element (source, doublet, etc.) to be used. ${ }^{7}$ For oscillatory aerodynamics, the doublet-lattice method ${ }^{\prime \prime}$ is the only other method, besides SOUSSA, which can handle subsonic oscillatory flows around complex configur-

[^0]ations, while soussa is the only program which can analyze oscillatory supersonic aerodynamics.

Finally, for fully unsteady aerodynamics, several problems have been considered since the initial work by Wagner (Ref. 10) on unsteady incompressible two-dinensional flow. While several mothods are available for vings in subsonic and supersonic flow (see Refs. 11 and 12), no other code, besides SOUSSA, is available for subsonic and supersonic flows around arbitrary complex configurations for either time or frequency domain analysis.

The purpose of this paper, is to present recent developments on the formulation of Ref. 2. In this paper only the subsonic formulation is presented in details; the supersonic formulation is only briefiy outlined in Appendix A. For conciseness, material previously presented (in particular, the material of Ref. 4) is not repeated herein.

Using the finite-element method to discretize the space problem, one ootains a set of differential-delay equations in time reiating the potential to its normal derivative (on the surface of the body), which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time $t \leq 0$ (steady state) and of small perturbations around the steady state for time $t>0$; the solution is obtained in Laplace's domain. From the potential, the aerodynamic generalized forces are obtained. Therefore the final output is the matrix of the aerodynamic coefficients, relating the generalized fozces to the generalized coordinates. The theory is embedded in a computer code, SOUSSA (Steady Oscillatory and Unsteady, Subsonic and Supersonic Aerodynamics), which is briefly
Cescribed. Numerical results are presented for steady and unstcady, subsonj.c and supersonic flows and indicate that the code is not only general, flexible, and simple to use but also accurate and fast.

2. Equation for Velocity Potential

The subsonic aerodynamic formulation used in SOUSSA is brieEly presented here. The supersonic formulation is given in Appendix A. Assume the flow to be an infinitesimal perturbation from the steady state flow. Then standard use of Green's function method applied to the equation of the velocity potential yields, after linearization, the following integral equation 1,2 .

$$
\begin{aligned}
& \left.2 \pi \Phi\left(\bar{P}_{*}, T\right)=-f_{\Sigma_{B}} \mid \Psi\right]^{\ominus} \frac{1}{R} d \Sigma_{E}+ \\
& \mathscr{S}_{\Sigma_{B}}\left\{[\Phi]^{\theta} \frac{\partial}{\partial N}\left(\frac{1}{R}\right)-\left[\frac{\partial \Phi}{\partial T}\right]^{\Theta} \frac{1}{R} \frac{\partial R}{\partial N}\right\} d \Sigma_{B} t \\
& \iint_{\Sigma_{W}}\left\{[\Delta \Phi]^{\theta} \frac{\partial}{\partial N}\left(\frac{1}{R}\right)-\left[\frac{\partial \Delta \phi}{\partial T}\right]^{\Theta} \frac{1}{R} \frac{\partial R}{\partial N}\right\} d \Sigma_{W}
\end{aligned}
$$

where \bar{P}_{\star} is on the surface of the body, ' $\mathrm{E}_{\mathrm{B}}, \overline{\mathrm{N}}$ is the outer normal
$\phi=\varphi / U_{\infty} \ell \quad \Psi=\partial \psi \delta N$
$X=x / \beta 2 \quad Y=y / \ell \quad Z=z / 2 \quad T=q_{\infty} \beta+/ \ell$
with $\beta=\sqrt{1-M^{2}}$ and

$$
\begin{equation*}
R=\left[\left(X-X_{*}\right)^{2}+\left(Y-Y_{*}\right)^{2}+\left(Z-Z_{*}\right)^{2}\right]^{1 / 2} \tag{3}
\end{equation*}
$$

while
[]$^{\theta}=\left.[]\right|_{T-0}$
where

$$
\begin{equation*}
\theta=M\left(X-X_{*}\right)+R \tag{5}
\end{equation*}
$$

is the time necessary for a disturbance to propagate from $\overline{\mathrm{P}}$ to $\overline{\mathrm{P}}_{*}$. In aadition, $\bar{\Sigma} \bar{W}$ is the (open) surface of the wake (known from the steady state solution) and $\Delta \Phi$ is the potential-discontinuity across the wake, evaluated in the direction of the normal, $i \cdot e . \Delta \phi \equiv \phi_{-S}^{-S}$ if the upper normal is used. It shóuld be noted that the value of $\Delta \phi$ is not an additional unknown, since

$$
\begin{equation*}
\Delta \Phi(P, T)=\Delta \Phi\left(\bar{P}_{T E}, T-\Pi\right) \tag{6}
\end{equation*}
$$

where $\bar{\Pi}$ is the nondimensional time necessary for the vortex-point to travel (within the steady flow) from the point, $\overline{\mathrm{P}}_{\text {TE }}$ (origin of the vortex-line at the trailing edge), to the point \bar{P}. For small-perturbation steady flow, π is given by 6

$$
\begin{equation*}
\pi=B^{2}\left(X-X_{T E}\right) / M \tag{7}
\end{equation*}
$$

Equations (1) and (6) fully describe the problem of linearized unsteady subsonic potential aerodynamics around complex configurations. In order to solve this problem, it is necessary, in general, to obtain a numerical approximation for Eq. (1). This is obtained by dividing the surface of the aircraft into N_{B} quadri-
lateral elements Σ_{h} (which are described in terms of the corner points by use of standard finite-element interpolation technique*) and by essuming ${ }^{*}$ and ϕ to be constant within each element:

$$
\begin{align*}
& \Psi\left(\bar{P}_{,} T-\theta\right)=\psi_{h}\left(T-\theta_{h}\right) \\
& \Phi\left(\bar{P}_{,} T-\theta\right)=\Phi_{h}\left(T-\theta_{h}\right) \tag{8}
\end{align*}
$$

where $\psi_{h}\left(T-\theta_{h}\right)$ and $\theta_{h}\left(T-\theta_{h}\right)$ are time dependent values of ψ and ϕ at the centroid \bar{P}_{h} of Σ_{h} at the time $T-\theta_{h}$ (where θ_{h} is the disturbance-propagation time from $\overline{\mathrm{P}}_{\boldsymbol{*}}$ to $\overline{\mathrm{P}}_{\mathrm{h}}$).

Next consider the integrals on the wake. In order to facilitate the use of Eq. (6), it is convenient to divide the wake into strips ciefined by (steady-state) vortex-lines emanating from the nodes on the trailing edge. The strips are then divided into N_{w} elements $\Sigma_{\mathrm{n}}(\mathrm{w})$ with nodes along the vortex lines. The potential discontinuity is assumed to be constant within each element

$$
\begin{equation*}
\Delta \phi(\bar{P}, T-\theta)=\Delta \phi_{n}\left(T-\theta_{n}\right) \tag{9}
\end{equation*}
$$

where $\Delta \varphi_{n}\left(T-\theta_{n}\right)$ is the value of $\Delta \dot{\theta}$ at the centroid $\bar{p}_{n}^{(W)}$ of the element $\sum_{n} \tilde{W}_{n}$ on the wake at $\frac{n}{i m e} T-\theta_{n}$ (Where θ_{n} is the propagation time from $\bar{p}(W)$ to $\left.\bar{P}_{\hbar}^{n}\right)$.
Note that according to Eq. (6)

$$
\begin{equation*}
\Delta \Phi_{n}(T)=\Delta \phi_{m(n)}^{(T E)}\left(T-\pi_{n}\right) \tag{10}
\end{equation*}
$$

where $m=m(n)$ identifies the trailingedge point which is on the same vortexline as the point $\overline{\mathrm{P}}_{\mathrm{n}}^{(W)}$. Furthermore, $\overline{\mathrm{\Pi}}_{n}$ is the time necessary for the vortexpoint to be convected from the trailingedge point $\bar{P}_{m}^{(T E)}$ to the wake-point $\bar{P}_{n}(W)$.
It may be worth noting that $\Delta 0_{\mathrm{m}}^{(\mathrm{TE})^{2}}=$ $\varphi_{h_{u}}^{-}-\phi_{h_{l}}$, where h_{u} and $h_{l_{l}}$, identify the upper and lower trailing-edge nodes on the body corresponding to the mth node on the trailing-edge.

$$
\text { In soussa } \varphi_{h_{u}}-\Phi_{h_{l}} \text { is approximated }
$$ with the value evaluated at the centroids of the elcments adjacent to the trailing edge. This is reasonable in view of the

[^1]Kutta concition. Π_{n} 'is then evaluated from the centroid, as

$$
\begin{equation*}
\underline{\pi}_{\underline{m}}=B^{2}\left(x_{n}^{(N)}-x_{\underline{h}}\right) / M \tag{1.1}
\end{equation*}
$$

With the above approximation, it is possible to write

$$
\begin{equation*}
\Delta \Phi_{m(n)}^{(T E)}=\sum_{h h} S_{n h} \phi_{h} \tag{12}
\end{equation*}
$$

where $S_{n h}=1\left(S_{n h}=-1\right)$, if h identifies the upper (lower) point \bar{P}_{h} on the body corresponding to the point $p_{n}(W)$ on the wake (i.e., near the point ${ }_{f}^{n}(T E)$ on the trifiling edge), and $\mathrm{S}_{\mathrm{nh}}=0$ otherwise.

Combining EGS. (1), (8) and (9) and assuming $\bar{P}_{*} \bar{P}_{i}$, one obtains

$$
\begin{align*}
& \Phi_{i}(T)=\sum_{h} B_{i h} \Psi_{h}\left(T-\theta_{i h}\right) \tag{13}\\
& +\sum_{h h} c_{j h} \Phi_{h}\left(T-\theta_{i h}\right)+\sum_{h} D_{i h} \ddot{\Phi}_{h}\left(T-e_{i h}\right) \\
& +\sum_{n} \sum_{h} F_{i n} s_{n h} \Phi_{h}\left(T-\theta_{i n}-\pi_{n}\right) \\
& +\sum_{n} \sum_{h} G_{i n} s_{n h} \dot{\Phi}_{h}\left(T-\theta_{i n}-n_{n}\right)
\end{align*}
$$

where

$$
\begin{align*}
B_{i h} & =-\left.\frac{1}{2 \pi} \iint_{\Sigma_{h}} \frac{1}{R} d \Sigma_{h}\right|_{P_{*}}=F_{i} \tag{i4}\\
C_{i h} & =\left.\frac{1}{2 \pi} \iint_{\Sigma_{h}} \frac{\partial}{\partial N}\left(\frac{1}{R}\right) \overline{d \Sigma_{h}}\right|_{P_{*}}=P_{i} \\
D_{i h} & =-\left.\frac{1}{2 \pi} \iint_{\Sigma_{h}} \frac{1}{R} \frac{\partial R}{\partial N} d \Sigma_{h}\right|_{P_{*}}=P_{i} \\
F_{i n} & =\left.\frac{1}{2 \pi} \iint_{\Sigma_{i}} \frac{\partial}{\partial N}\left(\frac{1}{R}\right) d \Sigma_{n}\right|_{P_{*}}=P_{i} \\
G_{i n} & =-\left.\frac{1}{2 \pi} \iint_{\Sigma_{i n}} \frac{1}{R} \frac{\partial R}{\partial N} d \Sigma_{n}\right|_{P_{*}}=P_{i}
\end{align*}
$$

$$
\begin{equation*}
\left.{ }^{\theta} \mathrm{i} h \quad{ }^{\theta} h\right|_{P_{*}}=\bar{P}_{j} \tag{15}
\end{equation*}
$$

Using the above mentioned hyperboloidal quadrilateral elements the coefficients $B_{j h}, C_{j h}, F_{j n}$ and $G_{j n}$ are evaluated
analytically with the expressions given

7Fi: i ins present size
in Ref. 4. The coefficients $D_{j h}$ are approximated as $D_{j h}=R_{j h} C_{j h}$ where $R_{j h}=\left|\bar{P}_{j}-\widetilde{P}_{h}\right|$.

Next, taking the Laplace transform with zero initial conditions of Eq. (13) yields ${ }^{6}$

$$
\begin{equation*}
\left[\tilde{\gamma}_{i h}\right]\left\{\tilde{\tilde{F}}_{h}\right\}=\left[\tilde{z}_{i h}\right]\left\{\tilde{\tilde{w}}_{h}\right\} \tag{16}
\end{equation*}
$$

where $\tilde{\Phi}_{h}$ and $\tilde{\Psi}_{h}$ are the Laplace transforms of Φ_{h} and Ψ_{h}.while

$$
\begin{align*}
\tilde{\gamma}_{i h}= & \delta_{i h}-\left(c_{i h}+S D_{i h}\right) e^{-S \theta_{j h}} \\
& -\sum_{n}\left(F_{i n}+S G_{i n}\right) e^{-S\left(\theta_{i n}+\eta_{n}\right)_{S_{n h}}} \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{z}_{\mathrm{h} h}=\mathrm{B}_{\mathrm{jh}} \mathrm{e}^{-5 \theta_{i \mathrm{~h}}} \tag{18}
\end{equation*}
$$

whereas S is the nondimensional Laplace parameter.*

3. Boundary Condition

The derivation of the boundary condition is given in details in Ref. 13. Here the derivation is briefly summarized.
The boundary condition obtained by impos-
ing that the velocity of the fluid and the velocity of the body, $\overline{\mathbf{v}}$, have the same components along the normal to the surface of the body. This yields

$$
\begin{equation*}
\psi=\left(\bar{v}-u_{\infty} \bar{i}\right) \cdot \bar{n}(t) / u_{\infty} . \tag{19}
\end{equation*}
$$

where $\bar{n}(t)$ is the instantaneous normal to the surface of the body. The unsteady part of the boundary conditions (neglecting high oider terms) is given by

$$
\begin{equation*}
\psi=\frac{1}{\frac{0}{\infty}^{x}} \bar{v} \cdot \bar{n}+\Delta \bar{n} \cdot \bar{T} \tag{20}
\end{equation*}
$$

with $\Delta \bar{n} \cdot T=\frac{1}{\left|\bar{a}_{1} \times \bar{a}_{2}\right|} \frac{\partial \vec{d}}{\partial \xi} \cdot \bar{\sigma}_{2} \times T-\frac{\partial \vec{d}}{\partial \xi^{2}} \cdot \bar{a}_{1} \times T$ where \vec{d} is the displacemint of a point 0 the boay. Expressing \bar{d} and \bar{v} in terms of the generalized coordinates of q_{n}. as

$$
\begin{equation*}
\bar{d}=\sum_{n=1}^{N} q_{n} q_{n}\left(5^{\alpha}\right) \tag{21}
\end{equation*}
$$

* For oscillatory aerodynamics, setting $\theta_{h}(T)=\tilde{\theta}_{h} e^{i \Omega T}$ and $\Psi_{h}(T)=\tilde{\psi}_{F} e^{i \Omega T}$
$y i e l d s$ the same equation with $S=i \Omega$

$$
\begin{equation*}
\bar{v}=\sum_{n=1}^{N_{0}} \dot{q}_{n} \bar{M}_{n}\left(\xi^{\alpha}\right) \tag{22}
\end{equation*}
$$

one obtains, in the Laplace domain,

$$
\begin{align*}
& \stackrel{\rightharpoonup}{*}=\sum_{n=1}^{N_{0}}\left[\frac{s}{U_{\infty}} \bar{M}_{n} \cdot \bar{n}\right. \tag{23}\\
& \left.+\frac{1}{\left|\bar{a}_{1} \times \bar{c}_{2}\right|}\left(\frac{\partial \bar{M}_{n}}{\partial \partial_{\xi}} \cdot \bar{o}_{2} \times \bar{i}-\frac{\partial \bar{M}_{n}}{\partial s^{2}} \cdot \bar{a}_{1} \times \bar{i}\right)\right] \tilde{q}_{n}
\end{align*}
$$

where $s=53 q_{0} / l$. Equation (23) gives the desiré relationship between normal wash at any point and the generalized coordinates G_{n}.

4. Pressure and Generalized Forces

In order to complete the formulation, the procedure for the evaluation of the aerodynataic pressure and the generalized forces is presented in this section.

First, consider an averaging scheme which imposes that the value of the potential Φ_{k}^{\prime} at the node ${ }^{\prime} P_{k}^{\prime}$ is the average of the values of the potential at the centroids of the elements surrounding \vec{P}_{k}^{\prime}. In other words

$$
\begin{equation*}
\left\{\Phi_{k}^{\prime}\right\}=\left[E_{k h}\right]\left\{\Phi_{h}\right\} \tag{24}
\end{equation*}
$$

where $\left[E_{k h}\right.$] is an averaging matrix defined as

$$
\begin{equation*}
E_{k h}=\frac{1}{N^{(}(k)} \quad \text { if } \quad \bar{P}_{k}^{\prime} \in \Sigma_{h} \tag{25}
\end{equation*}
$$

(i.e., if the $\overline{\bar{P}}_{k}^{\prime}$ is one of the corner points of the element Σ_{h}) and

$$
E_{k h}=0 \quad \text { othervise }
$$

In Eq. (25), $N^{(k)}$ is the number of elements which have $\bar{p}_{\dot{k}}$ as one of their corner points. Having evaluated the values of ϕ at the four corner points of each quadrilatoral element, the potential is expressed as

$$
\begin{equation*}
\phi=\Sigma \Phi_{h}^{\prime} N_{h}^{\prime}(\ddot{P}) \tag{27}
\end{equation*}
$$

ORIGINAL PAGE IS OF POOR QUALITY
where $\mathrm{N}_{\mathrm{h}}^{\prime}$ are the first-order global shapefunctions obtained by assembling local shape-functions of the type

$$
\begin{equation*}
N_{k}^{(E)}=\frac{1}{1 s_{k} \eta_{k}}\left(\xi+\xi_{k}\right)\left(\eta+\eta_{k}\right) \tag{28}
\end{equation*}
$$

where $5_{k} \equiv \pm 1$ and $\pi_{k}= \pm 1$ are the locations of the corners \bar{P}_{k} of the element Σ_{h}. (5 and η ' are the coordinates over the elëment) so that

$$
\begin{equation*}
\frac{\partial \phi}{\partial E^{\alpha}}=\sum \delta_{h}^{\prime} \frac{\partial N_{h}^{\prime}}{\partial E^{\alpha}} \tag{29}
\end{equation*}
$$

where $z^{1}=\xi ; z^{2}=\pi$.
The pressure coefficient may be evaluated from the linearized Bernoulli theorem as

$$
\begin{equation*}
c_{p}=-2\left(\frac{\beta}{M} \frac{2 \Phi}{\partial T}+\frac{1}{\beta} \bar{\nabla} \phi \cdot \bar{i}\right) \tag{30}
\end{equation*}
$$

Expressing $\bar{\nabla} \phi$ in terms of the tangential derivatives of ϕ and neglecting the contribution of the normal component, the pressure coefficient is given by

$$
\begin{array}{r}
c_{p}=-\frac{2}{B}\left(\frac{\beta^{2}}{M} \frac{\partial \phi}{\partial T}+\bar{i} \cdot \bar{A}^{l} \frac{\partial \Phi}{\partial \Xi l}\right. \tag{31}\\
\left.+\bar{i} \cdot \bar{A}^{2} \frac{\partial \dot{ }}{\partial \Xi^{2}}\right)
\end{array}
$$

where $\bar{\AA}^{\alpha}$. are the contravaniant base vectors, with $\partial \Phi / \partial \Xi^{\alpha}$ given by Eq. (29).

Next consider the generalized aerodynamic forces

$$
\begin{equation*}
Q_{n}=-\oiint q_{p} \overline{c_{p}} \cdot \bar{M}_{n} d \bar{\Sigma}_{B} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
q=\frac{1}{2} p U_{\infty}^{2} \tag{33}
\end{equation*}
$$

is the dynamic pressure.

By assuming that the pressure coefficient c is constant within each element (consistent with the assumption made on ψ), Eq. (32) can be expressed as

$$
\begin{equation*}
\left.\left[Q_{n}\right]=q\left[Q_{n h}\right]\left(c_{p}\right)_{h}\right) \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
Q_{n h} & =-\iint_{\Sigma_{h}} \bar{n} \cdot \pi_{n} d \Sigma_{h} \\
& =-\iint_{-1}^{1} \bar{o}_{1} \times \bar{o}_{2} \cdot \bar{M}_{n} d j_{j}^{1} d \xi^{2} \tag{35}\\
& \approx-4\left(\overline{\bar{a}}_{1} \times \bar{o}_{2} \cdot \bar{M}_{n}\right) \mid \vec{p}=\bar{p}_{h}
\end{align*}
$$

where \bar{o}_{1}, and \bar{a}_{2} are the base vectors of the element $\Sigma_{\dot{b}}$.

5. SOUSSA

The above formlation is irclemented in the computer program soussa (Steady, Oscillatory and Unsteady, Subsonic and Supersonic 2erodynamics). The program is an improvement of the prognen SOSSA presented in Ref. 4 and therefore retains all of the basic features analyzed in Ref. 4. In particular th. progran besides being general and flexible is also very simple to use. The only inputs ate the location of the corner points of the quadrilateral elements, the tach nuriber and the reduced frequency. The wake is autematically generated. It should be noted that a conside able immovent with respect to SOSSA" is that supersonic flows are treated exactly the same way as the subsonic ones: in particular diaphragns are not used in SOUSSA: Therefore the basic simplicity in use for the subsonic flows is recained in supersonic flows as well. An adaditional feature which dien't exist in SOSSA is the evaluation of the aerodynamic influence coe Ei:clents. Therefore it may be worth it to ada a few comments on the computational implementation of the formulation presented above. (Details for the following expressions are given in Ref. 13.) Note first that the relationship between normal wash and generalized coordinates,
Ey. (23) may be written as*

$$
\begin{equation*}
\underline{\tilde{\Psi}}=\tilde{\underline{M}}^{(1)} \underline{\tilde{\underline{u}}} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{\underline{w}}=\left\{\tilde{w}_{n}\right\} \tag{37}
\end{equation*}
$$

[^2]\[

$$
\begin{equation*}
\tilde{\underline{q}}=\left\{\dot{q}_{\underline{a}}\right\} \tag{38}
\end{equation*}
$$

\]

and $\tilde{2}^{(1)}$ a matrix implicitly defined by Eq. (23). Furthermore Eq. (16) may be rewritten as

$$
\begin{equation*}
\tilde{\underline{z}}=\tilde{\boldsymbol{Y}}^{-1} \tilde{\underline{Z}} \tilde{\underline{\psi}}=\tilde{M}^{(2)} \tilde{\psi} \tag{39}
\end{equation*}
$$

whereas the relationship between pressure coefficient and potential may be written as

$$
\begin{equation*}
\tilde{c}_{\rho}=\tilde{M}^{(3)} \tilde{\cong} \tag{40}
\end{equation*}
$$

where $\tilde{\underline{\tilde{n}}}^{(3)}$ is obtained by combining Eqs. (24), (27), (29) and (31). Finally (see Eq. (34))

$$
\begin{equation*}
\tilde{Q}=q \tilde{\tilde{M}}^{(4)} \tilde{c}_{p} \tag{41}
\end{equation*}
$$

or, combining Eqs. (35), (39), (40) and (41),

$$
\begin{equation*}
\underline{\underline{Q}}=q \tilde{M} \tilde{q} \tag{42}
\end{equation*}
$$

where the matrix of the aerodynamic influence coefficients \mathbb{M} is given by

$$
\begin{equation*}
\tilde{\underline{M}}=\underline{\underline{M}}^{(4)} \tilde{\underline{M}}^{(3)} \underline{\underline{M}}^{(2)} \underline{\underline{M}}^{(1)} \tag{43}
\end{equation*}
$$

Note that $\tilde{\underline{M}}^{(1)}$ and $\tilde{\underline{\mathbb{N}}}^{(4)}$ depend upon the modes $\overline{\mathbb{A}}_{n}\left(\tilde{\xi}_{-}^{\alpha}\right)$, whereas $\tilde{\underline{U}}(2)$ and $\underline{\underline{\underline{m}}}^{(3)}$ do not. The separation of $\tilde{\underline{M}}$ into mode-dependent matrices and mode-independent matrices is particularly useful for automated structural design in which the same geometry but different modes are used in each iteration. In adaition $\tilde{\underline{N}}^{(2)}$ is the only matrix which depenás in a complicated way upon the complex freguency S. However once the coefficients of Eqs. (14) and (15) are evaluated, the evaluation of $\tilde{y}(2)$ requires only the combination of this coefficients according to Eqs. a7) and Q8) and the inversion of the matrix $\underline{\tilde{y}}$ (see eq. 39). This is particularly useful for the evaluation of the aerodynamic influence coefficients for various freguercies, as needed for instance for flutter analysis. An exanple of the time saving obtained by using the two above features is given in the following section.
6. Numerical p.esults

Typical numerical results obtained with SOUSSA (Ref. 14) are presented in this section. Figure 1 shows the sectional lift coefficients at various stations of a wingbody in steady, subsonic flow compared against experimental and theoretical
results of ref. 6 and 15. The resultes were obtained for $M=0$ and a rectangular wing with chord $\mathrm{c}=1$, and span b=6 thickness $t=0.09$ and $a_{w}=\sigma^{\rho}$. The body is at zero angle of attack with overall length of 5 choras (forcbody with length $\mathrm{L}_{\mathrm{a}} 2 \mathrm{C}$, fuselage length $\mathrm{L}_{\mathrm{f}}=3$). Note that
the fuselage is closed at the end by a circular plate. In addition, a flat wake is emanating from the wing trailing edge and a cylincrical wake from that of the fuselage. Figure 2 shows the convergence analycis of sectional lift of Figure 1 as a function of the number of elements. The computer tize used for each case is also indicated. Figures 3 and 4 present the lift and moment coefficients of a rectangular wing in supersonic unsteady Elows *ith aspect ratio. $\mathrm{AR}=2, \mathrm{c}=1, \mathrm{~b}=2$, $\tau=0.001$ and complex reduced frequencies $k_{c}=-0.2+i 1.0,0.0+i 1.0$ and $+0.2+i 1.0$ for Nach number $\mathrm{H}=2^{\frac{1}{2}}$ to 2.5 . The results are compared with those of Ref. 16. Noted tha $=$ in contrast to Ref. 6, the present rothod does not require the use of diaphragms. Figure 5 presents a wing-' ody-tail configuration in fuliy unsteady $\varepsilon 10 \%$ with specifications of the geometry sirilar to that of Fig. 1. However, a refizontal tail is added with chord $c=1$ and $b=6$ which is stationed 0.5 chords above the center line of the Euseiage. The complex reduced frequency was ${ }_{c}=0.2+10.5$. No existing result is availcble for comparison, for, as mentioned above, the present method is the only existing one which can analyze fully unsteady flow. The result is presented to demonstrate the generality of the method and its ability to handle fully unsteacy $E l o w$ problems. Figures 6 and 7 presents the lift and moment coefficients and their corresponding phase argies for a rectangular wing osciliating in plunge and pitch in subsonic flow with $A R=2$, $\tau=0.001$, Mach number $h=0$. and $4 \times 7 \times 7$ elements on the whole wing. The results are identical with the ones cbtained with SOSSA. However, considerable time saying was obtained in the respective frequency and mode calculations by the decomposition of the matrix into freguency and mode dependent matrices O_{I} (see Eq. (13)). All the results were obtained in 44 mins. i.e. 82.5 secs. for one aeroyyamic coefficient and one frequency (since four coefficients and eight frequencies have been considered). Note that the time for one single coefficient. . and one sirigle frequency (if evaluated independer. $(1 y$) is about 13 minutes.

Tables 1 and 2 contains the generalized forecs for an AGARD wing-tail configuratio.. in quasi-stcady and oscillatory flow compared with several existing methods (Refs. 17 to 21). While Table 3 included the generalized forces for the sare configuration in fully unsteady flow (conplex Erequency). For all the results the standard AGARD geometry (des-
cribed for instance in Refis. 18 and 19) was used. Tis consists of two swept tapered lifting surfaces. The first surface has $x_{L E}=0$ and $x_{T E}=2.25$ at $y=0$ and $x_{L E}=2.75$ and $x_{T Z}=3.70$ at $y=1$ and is located at $z=0$. The second surface has $x_{L E}=2.70$ and $x_{T E}=4.00$ at $y=0$ and $x_{L E}=3.90$ and $x_{T E}=4.25$ at $y=1$ and is located at $z=6$. All the results prescribed here vere obtained using $4 \times 7 \times 7$ elements on each surface. Results obtained with $4 \times 5 \times 5$ elenents indicate that convergence was attained. The results are usually in excellent agrement with those of Refs. 17 to 21 .

7. Conclusions

A general formulation and computer program for the analysis of steady, oscillatory and unsteaciy, subsonic and supersonic aorodynamic flows around complex configurations have been presented. The final output of the code is the matrix of the aerodynamir influence coefficients for fluttor analysis to be used for instance in the progran FCAP (Ref. 22).

It should be noted that, while there exists several methods to analyze the problem of unsteady cotupressible flows for complex configurations, the present method, embedded in the computer program SOUSSA, is unique in the following aspects:

1. It provides a completely unified approach for steady, oscillatory and fully un teady, subsonic and supersonic aek =iynamic flows.
2. It can be applied to srbitrarilycomplex configurations. Wing-boiytail configurations in fully ursteady flows have been presented.
3. It is computationally extremely general, flexible, efficient and above all, accurate. The elimination of diaphragms in supersonic flow improved considerably the simplicity and efficiency of the code.
4. SOUSSA is the only existing program that can analyze fully unsteady complex-configuration potential aerodynamics in subsonic or supersonic regimes. It is also the only program capable of handiling oscillatory supersonic aerodynamics for complex configurations.
5. In contrast to existing methods, which in many instances requires extensive user's background in aerodynamics and familiarity with the specisic method, the present code requires very iimited human intervention and is extremely easy to use.
6. Flutter and optimal design annlyses require evaluation of the aerodynanic influence coefficients for several frequencies and mode shapes. With the unique features mentioned above, (i.e., separation of the acrodynamic influence coefficient matrices into frequency and mode dependent and independent matrices) the computer time that normally would have been requirad is dramatically reduced.

Appendix A

In this Appendix the formulation for the supersonic cace is briefly outlined. For conciseness, only supersonic trailing edges are considered so that the contribution of the wake can be ignored. (In SOUSSA diaphagms are not used and therefore the supersonic wake is treated as the subsonic one.) Under small-perturbation assumption, the Green theorem for potential. supersonic flow is given by
$2 \pi \Phi\left(P_{*}, T\right)=-f f_{\Sigma}\left(\left|w^{\prime}\right|^{0+}+\left|v^{\prime}\right|^{0-}\right) H$
$\left.+\oiiint_{\Sigma_{B}}(\mid \Phi)^{3+}+[\Phi]^{--}\right) \frac{\partial}{\partial N^{c}}\left(\frac{H}{R^{\prime}}\right) d \Sigma$
$-\oiint \oiint_{B}\left(\left[\frac{\partial \Phi}{\partial T}\right]^{\rho+}-\left[\frac{\partial \phi}{\partial T}\right]^{-}\right) \frac{H}{R^{\prime}} \frac{\partial R^{\prime}}{\partial N^{c}} d \Sigma$
where $\psi^{\prime}=\frac{\partial \Phi}{\partial N^{c}}$, $\frac{\partial}{\partial N^{c}}$ is the conormal derivative (Ref. 4)) is the conormal wash which is prescribed by the boundary conditions, and

$$
X=x / B^{\prime} l, \quad Y=y / l: Z=z / l \quad T=0_{n} B^{\prime} t / L \text { (A.2) }
$$

$$
\text { with } \beta^{\prime}=\sqrt{M^{2}-1} \quad \text { Furthermore, }
$$

$$
\begin{equation*}
R=\left[\left(X-X_{*}\right)^{2}-\left(Y-Y_{*}\right)^{2}-\left(Z-Z_{*}\right)^{2}\right]^{1 / 2} \tag{A.3}
\end{equation*}
$$

whereas

and

$$
\begin{equation*}
[]^{\theta^{ \pm}}=\left.[]\right|_{T-\theta^{ \pm}} \tag{A.5}
\end{equation*}
$$

with

$$
\begin{equation*}
0^{ \pm}=M\left(X_{*}-X\right) \pm R^{\prime} \tag{A.6}
\end{equation*}
$$

Following the same procedure used for the subsonic case one obtains
$\Phi_{j}(T)=\sum_{h} B_{j h}^{\prime}\left[\dot{v}_{h}^{\prime}\left(\left(-\theta_{j h}^{+}\right)+\psi_{h}^{\prime}\left(T-\theta_{j h}\right)\right]\right.$

$$
\begin{aligned}
& +\sum_{h} c_{i h}^{\prime}\left[\phi_{h}\left(T-\theta_{j h}^{+}\right)+\phi_{h}\left(T-\theta_{j h}^{-}\right)\right]- \\
& +\sum_{h} D_{i h}^{\prime}\left[\dot{s}_{h}\left(\left(-\theta_{i h}^{+}\right)-\dot{\phi}_{h}\left(T-\theta_{j h}^{-}\right)\right]\right.
\end{aligned}
$$

where

$$
\begin{align*}
& B_{i h}^{\prime}=-\left.\frac{1}{2 \pi} \iint_{\Sigma_{h}} \frac{H}{R^{\prime}} d \Sigma_{h}\right|_{P_{*}=P_{P}} . \tag{A.8}\\
& C_{i h}^{\prime}=-\left.\frac{1}{2 \pi} \iint_{\Sigma_{h}} \frac{\partial}{\partial N^{c}}\left(\frac{H}{R^{\prime}}\right) d \Sigma_{h}\right|_{P_{*}=P_{p}} \\
& D_{j h}^{\prime}=-\left.\frac{1}{2 \pi} \iint_{\Sigma_{h}} \frac{H}{R^{\prime}} \frac{\partial R^{\prime}}{\partial N^{c}} d \Sigma_{h}\right|_{P_{*}=P}=P_{i}
\end{align*}
$$

The definition of $\underline{\theta}_{j}^{\dagger}$ and $\dot{\underline{0}} \overline{j h}$ is discussed at the end of this appendix.

Finally, taking the Laplace transform of equation (26) results in

$$
\begin{equation*}
\left[\tilde{\tilde{\gamma}}_{i h}^{\prime}\right]\left\{\tilde{\sigma}_{h}\right\}=\left[\tilde{z}_{\mathfrak{j}}^{\prime}\right]\left\{\tilde{\boldsymbol{w}}_{h}\right\} \text {. } \tag{A.9}
\end{equation*}
$$

where

$$
\begin{align*}
{\left[\tilde{\gamma}_{i h}^{\prime}\right]=} & {\left[\theta_{j h}^{e}-c_{j h}^{\prime}\left(e^{-S \theta_{j h}^{+}}+e^{-S \theta_{i h}^{-}}\right.\right.} \tag{A.10}\\
& \left.-S D_{i h}^{\prime}\left(e^{-S \theta_{j h}^{+}}-e^{-S \theta_{j h}^{-}}\right)\right] \\
{\left[\tilde{Z}_{j h}^{\prime}\right]=} & {\left[B_{j h}^{\prime}-\left(e^{-S \theta_{j h}^{+}}+e^{\left.-S \theta_{i h}^{\prime}\right)}\right]\right.} \tag{A.11}
\end{align*}
$$

Equation (A.9) yields the matrix $\tilde{N}^{(2)}$ to be used in Eq. (39) for supersonic flows. The supersonic matrices $\underline{\mathbb{M}}^{(1)}$ $\tilde{\underline{M}}^{(3)}$ and $\tilde{\underline{M}}^{(4)}$ are equal to the subsonic ones. Therefore the above modifications in the definitions of $\tilde{Y}_{j h}$ and $\tilde{z}_{j h}^{1}$ are the only changes necessary for supersonic flows. As mentioned above if the trailing edges are partially subsonic the wake is troated as in the subsonic case.

Finally a fow remarks are necessary on the fact that diaphragms are not used in SOUSSA and on how this relates to the correct definition of $\mathrm{o}^{+\boldsymbol{f}}$ and $\bar{\theta}$. It should be noted that $\hat{\theta}_{i h}^{+i h}$ and $\theta_{i h}^{-0 .}$ ih are imaginary. if the centroid \vec{p}_{h} of the element i_{h}^{-}lies outside the Nach forecone of the control point $\overline{\mathbf{P}}_{j}$. This
yields no problem for the elements completely outsicie or completcly inside the Nach forecone. However for the elements partially inside the Nach forccone, a special definition for $\theta_{j h}{ }^{+}$. and $e_{j h}$ must be used: note that ${ }^{\circ}{ }_{i h}{ }^{+}$ and - 0 jhepresent the two propagation times foz the disturbances cmanating from the element $\Sigma_{h_{1}}$ to reach the point \bar{F}_{j}. Therefore for elements ${ }_{+}$partially inside the Kach forecone, $0_{i h}$ and $\Theta_{j h}$ are most appropriately defined (from a physical point of viow) as the propagation tines from the centroid of the portion of the elonent Σ_{h} intersected by the Mach forecone, to the control point $\overline{\mathbf{P}}_{j}$.

It should be noted that with this definition of Q_{j}^{+}and Q ir, supersonic flows can be tredted exactily the same way as subsonic flows. For instance a wing with supersonic leading edge is solved by using both sides of the wing. simultancousiy. Also for vings with partially supersonic leading edges the usc of diaphragms is not necessary. This is a considerable advantage: the use use of diaphragns in the program SOSSA was cumbersome, especially for wing-body-tail and non-coplanar surfaces analyses. In the program sojssa there is no difference in the treatment of subsonic and supersonic flows.

Refexences

1. Morino, L., "A General Pl:cory of Unsteady Compressible Potential Aerodynamics," NASA CR-2464, 1974.
2. Morino, L., "Unsteady Compressible Potential Flow Around Lif̃ting Bodies: General Theory," AIAA Paper No. 73-196, 1973.
3. Korzno, L. , and Kuo, C.C., "Subsonic Potential Aerodynamics for Complex Configurations: A General Theory," AIAA J., Vol. 12, No. 2, Feb. 1974, pp. 191-197.
4. Norino, L., Chen, L.T., and Suciu, E.O., "Steady and Oscillatory Subsonic and Supersonic Aerodynamics Around Complex Configurations," AIAA J., VOl. 13, No. 3, March 1975, pp. 368-374.
5. Norino, L., "Subsonic and Supersonic Indicial Aerodynamics and Aerodynamic Transfer Function for Complex Configurations," Boston University, ENG-TN-74-01, Septenber 1974.
6. Norino, L., and Chen, L.T., "Indicial Compressible Potential Acrodynamics Around Complex Aircraft Configuration," in Aezodynamic Analyses

Roquiving advanced Computers, NASA Sp-347, paper No. 38,2975 , pp. 1067-1110.
7. Ashley, H. and Rodden, V.P., "WingBoaly herodynamic Interaction," Annual Review of Fluid Mechanies, Vol. 4, 1972, pp. 431-472.
8. Albano, E., and Rodden, W.P., " A Doublet-Lattice Nethod for Calculating Lift Distribution on Oscillating Surfaces in Subsonic Flows," AIAA J.. Vol. 7, No. 2, Feb. 2969, pp. 279-285.
9. Giesing, J.P., Kalman, T.P., and Rodden, W.P.. "Subsonic Steady and Oscillatory Aerodynamies for Multiplo Interfering Wings and Bodies" . Journal of Aircraft, Vol. 9, No. 10, Oct. 1972, pp. 693-702.
10. Wagner, H., "Uber aie Entschung des dynamischer Aurtribes von Tragflugeln," 2. Angew. Nath. \& Nech., Bd. 5, Heft 1, Feb. 1925, p. 17.
11. Lomax, H., "Indicial Aerodynamics," Aerodynamic Repects, AGARD Manual on Aeroelasticíty, Pt. II, Ch. 6, W.P. Jones, ed., North Atlantic Treaty Organization (Paris).
12. Garrick, I.E., "Nonsteady Wing Characteristics," Section \bar{F} of Aerodynamic Components of Aircraft at High speeds. VOL. VII of High Speed Aerodynamics and Jet Propulsion, eds. A.F. Donovan and H.R. Lawzence, Princeton Univ. Press, 1957.
13. Noll, R.B., and Morino, L., "Flight Control Analysis Program (FCAP) for Arbitrary Configuration Flexible Aircraft With Active Control," Vol. I, Theoretical inalysis, Aerospnce Systems, Inc., Burlington, Nass., ASI-TR-75-23, 1975.
14. Tseng, K.D. and Norino; L., "SOUSSA : Steady, Oscillatory and Unsteady, Subsonic and Supersonic Aerodynamics: A User's lanual" , in preparation.
15. Labrujere, T.E., Loeve, W. and Sloff, J.W. . "An approximate Method for the Calculation of the Pressure Distribution on Wing-body Combinations at Subcritical Speeds", AGARD Specialist Neeting on Nerodynamic Interference, Silver Springs, Md., Sept.1970,AG:RD Conf.Proc. No. 71.
16. Laschka, B., "Zur Theorie dor Harmonisch Schwingendon Tragenden Flache bei. Unterschallenstromung", zeitschrift fur Flugwissenchaften, 11 (1963), Heft 7, pp. 265-292.
17. Huttsell, L.J. and pollock; s.J., "Unsteady Aerodynamic Loads foi the AGARD Interfering Lifting Surfaces". AFFDL paper, 1974.
18. Rodden, W.P., Giesing, J.P. and Kalnan, T. D., "Fev Developments and Applications of the Subscnic DoubletLattice Nethod for Nonplaner Configurations" Paper No. 4, AGARD Symposium on Unsteady Nerodynamics for Neroclastic inalyses of the Interfering Surfaces, AGNDD-CP-80-71, 1970.
19. Davies, D.E., "Applications of Unsteady Airforce Calculation Methons to AGARD Interfering Surfacas", papez No. 8, AGARD Symposius on Unsteacly ierodynamics for Aeroclastic Analyses of Interforing Surfaces, AGARD-CP-80-71, 1970.
20. Pollock, S.J. and liuttsel.2, L.J. "Applications of Three Unsteady Aerodynanic Load prediction Hothods" AFFDI, $2 \mathrm{E}-73-147$, May 1974.
21. Appa, \%. and Jones, W.P., "Integrated potential Formulation of Unstoacy Rezolynanics for Interacting "ings," AIAA Paper No. 75-762.
22. Norino, L., and No11, R.B., "Elutter and Gust Response Analysis of Flexible Aireraft With hetive Contro?", to be presented at the AIAN/ASKE/SAE 17 th Structures, Structurel Dynanies and Naterials Consereace, King of prusuia, Pa., Nay 4-7 1976.

NOME:CLLATJRE

spoed of sound in undisturbed flow recuced frequency, wh/ $\mathrm{U}_{\text {s }}$
complex reduced fregueney
reforence length
Nach number; $\mathrm{U}_{\omega} / \mathrm{a}_{\omega}$
normal to Σ_{B}
number of wake elemente in x-direction
number of clements in x-airaction on half wing
number of elements in y-direction on half wing
point having coordinates (X, \dot{Y}, z)
control point, $\left(X_{*}, \mathbf{X}_{*}, Z_{*}\right)$
defined by Eq . (3)
nondimensional complex frequency (for Laplace Transiorm)
I nondimensional time, Eq. (2)
U_{∞} velncity of undisturbed flow
nondinensional space coordinates, Eg. (2)
discontinuity of across the wake
θ time for a djsturbance to propagate. from \mathfrak{p} to \ddot{p}_{*}, Eq. (5)
II convection time of wake vortices, Eq. (7)
i_{B} surface of body
I_{V} surface of wake
nondimensional velocity perturba-
$\%$ tion potential nondimensional normal wash
Laplace Transform of ()

Fiq. 1. Sactional lift coafficiont distributions ior is wing-body conilguration with $\alpha_{w}=5, a_{\mathrm{g}}=0, \mathrm{M}=0$ and NELEM=388. W Cimparison with results of Rafs. 6 and 15.

Fig. 2. Convergence study of Fig. 1 with NELEM=200, 264 and 388.

Fig. 3. Lift coefficient, C_{3}, for rectangular wing oscillating in pitch, with $A R=2, T=0.001, \mathrm{~N}=8, \mathrm{~N}=7$. Comparison with results $\circlearrowright f$ Refy 16 .

Fig. 4. Moment coerficient, $C_{\text {, }}$ versus M , for rectangular wing osciliating ir. pitch, for AR=2, $\tau=0.001,{ }^{N} \times 8, N^{2}{ }^{n \prime 2} 7$. comparison with results of ${ }^{x}$ ref. ${ }^{16}$.

Fig. Sa. Pressure distributions at $2 \mathrm{y} / \mathrm{b}$ $=0.78$ wing spanwise station of a ving-body-tail configuration in fully unsteady pitching mode with pitch axis at wing mid-chord. Complex frequeney $k_{c}=0.1+i 1.5$, span $b=6$, fuselage radius $\mathrm{r}^{\mathrm{c}}=0.5$, thickness ratio $\tau=.09$, total number of elements NELEM $=338$.

Fig. 5b. Pressure distributions at $2 y / b$ -0.78 horizontal-tail spanwise station of the same configuration as Fig. 5a.

yig. 6. Lift coefficient, f, versus k, for rectangular wing oscillating in plunge, with $A R=2, T=0.001, ~: ~ \%=0, N=7, N=7, N=20$, wake length $I_{w}=2 \mathrm{c}$. Comparixon with results of Ref. 16.

ARe

Fig. 7. Noment coefficient, $\tilde{C}_{\text {, }}$, versus k, for a rectangular wing oscilliting in plunge, with $A R=2, \tau=0.001, M=0, N=7, N^{\prime \prime}$ 7. N $=20$, wake length $\mathrm{L}=2 \mathrm{c}$. Compa with results of Ref. 16 W .
:TADLE 2
Generalized herodynamic roree Coefficients
for Acatio vinj-Tail intorterenea $\mathrm{Vn}^{-0.3, \Delta 2 / t=0.6}$

Method							
wing twist	Wing twast	2.)	$\left\lvert\, \begin{aligned} & -0.0371 \\ & -0.0733 \\ & -0.0600 \end{aligned}\right.$	$\begin{aligned} & 0.1725 \\ & 0.2635 \\ & 0.0679 \end{aligned}$	$\left\lvert\, \begin{aligned} & -0.2035 \\ & -0.1644 \\ & -0.2598 \end{aligned}\right.$	$\begin{aligned} & 0.2352 \\ & 0.1742 \\ & 0.1335 \end{aligned}$	ReE. 17 Ref. 10, Present
Wing ${ }^{\text {bending }}$	Wing, twist	2;1	$\begin{aligned} & 0.2612 \\ & 0.2776 \\ & 0.2272 \end{aligned}$	$\begin{aligned} & 0.3504 \\ & 0.3760 \\ & 0.2607 \end{aligned}$	$\begin{aligned} & 0.2147 \\ & 0.2243 \\ & 0.1355 \end{aligned}$	$\begin{gathered} 0.4145 \\ 0.3974 \\ 0.3684 \end{gathered}$	- Ref. 17 Ref. 18 present
fall 2013	Wing twivt	3,2	$\left\|\begin{array}{l} -0.0615 \\ -0.0653 \\ -0.0556 \end{array}\right\|$	$\left\|\begin{array}{r} 0.0044 \\ 0.0347 \\ -0.0045 \end{array}\right\|$	$\begin{aligned} & -0.0615 \\ & -0.0343 \\ & -0.0469 \end{aligned}$	$\begin{array}{r} 0.1246 \\ -0.0432 \\ 0.0163 \end{array}$	Re\&. 17 Ref. 20 Present
Tail piteh	Wing tuiat	4, 2	$\begin{aligned} & -0.0205 \\ & -0.0728 \\ & -0.0254 \end{aligned}$	A.00250.0371-0.0050	$\begin{aligned} & -6.0232 \\ & -0.0460 \end{aligned}$	0.01930.019920.0089	Ref. 17 Ref. 18 Present
Wing tuist	$\begin{aligned} & \text { Wing } \\ & \text { benting } \end{aligned}$	1.2	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & =0.0515 \\ & =0.0410 \\ & =0.0262 . \end{aligned}$	$\left\|\begin{array}{l} -0.1360 \\ -0.1732 \\ -0.1163 \end{array}\right\|$	-0.0507-0.0387-0.0332	$\begin{aligned} & \text { ket. } 27 \\ & \text { Ret. } 18 \\ & \text { present } \end{aligned}$
Wing $\begin{aligned} & \text { bensing }\end{aligned}$	Wing $\begin{gathered}\text { bending }\end{gathered}$	2,2	$\begin{aligned} & 0.0 \\ & 0.6 \\ & 0.0 \end{aligned}$	0.1042 0.1961	$\begin{aligned} & -0.3,79 \\ & -0.3303 \end{aligned}$	$\begin{aligned} & 0.2003 \\ & 0.2147 \end{aligned}$	Rę. 17 nef. 18 Present
2a11 roll	ving bending	3,2	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & -0.0395 \\ & -.0420 \\ & -0.0356 \end{aligned}$	$\left\|\begin{array}{l} -0.3431 \\ -0.0456 \end{array}\right\|$	$\begin{gathered} -0.0237 \\ 0.0052 \\ 0.0222 \end{gathered}$	$\begin{aligned} & \text { Rat. } 17 \\ & \text { Ref. } 10 \\ & \text { Present } \end{aligned}$
					-0.0376		
9711 Fiteh	Wing bending ${ }^{\circ}$	4,2	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & -0.0232 \\ & -0.0439 \\ & -0.0204 \end{aligned}$	$\begin{aligned} & -0.0192 \\ & -0.0573 \\ & -0,0162 \end{aligned}$	$\begin{array}{r} -0.0049 \\ 0.0051 \\ -0.0042 \end{array}$	Ref. 17 Ref. 28 Present
Wing twist	zall 2012	1,3	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	-0.60140.0-0.0004	$\begin{aligned} & -0.0008 \\ & -0.0008 \\ & -0.0005 \end{aligned}$	$\begin{aligned} & -0.0031 \\ & -0.0004 \\ & -0.0018 \end{aligned}$	Ref. 17 Ref. 18 Present
wing benaing	Tals rall	2,3	0:0	-6.0619	-0.0026-0.0015-0.0022	$\begin{aligned} & -0.0052 \\ & -0.0006 \end{aligned}$	Ref. 17 Ref. 18 present.
Tali ${ }^{\text {Roll }}$	720 13 2311	3,3	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.3389 \\ & 0.3949 \\ & 0.3575 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & -0.315 i \\ & -0.2374 \\ & -0.3638 \end{aligned}\right.$	$\begin{aligned} & 0.4215 \\ & 0.4322 \\ & 0.3877 \end{aligned}$	- Rel. 17 Ref. 18 Re Present
rall Rol2	2ail Piteh	4,3.	0.0	0.2529	-0.3175	0.1325	Mef. 17
			0.0 0.0	0.1835 0.2870	-0.5089 -2.2952	0.4945 0.1454	2e2. 18
rasil piteh	Wing twist	1.4	-0.0033	0.0025	-0.0007	-0.0016 -0.0001	Ref. 17
			-0.0001 -0.0008	-0.0601	-0.0024 -0.0044	- $\begin{aligned} & -0.0001 \\ & -0.0012\end{aligned}$	Ref. 18
Tall pitch	Wing bending	2,4	-0.0049	-0.0309	-0,0456	0.0012	Sof. 17
			0.0002	-9.0011	$=0.0096$ -0.0120	0.0007 0.0002	Ref. 19
			-0.0014	-6. 6022	-0.0120		
Tall Pitch	Tail Roll	3.4	$\begin{aligned} & 0.6345 \\ & 0.6,75 \\ & 9.6400 \end{aligned}$	0.69750.99860.7223	$\begin{aligned} & 0.5328 \\ & 0.3278 \\ & 0.3916 \end{aligned}$	$\begin{aligned} & 0.7713 \\ & 2.0701 \\ & 0.7766: \end{aligned}$	Ref. 17 fef. 18 present
Tall Pitch	Tail Pitch	4.4	$\begin{aligned} & 0.1866 \\ & 0.7205 \\ & 0.1590 \end{aligned}$	$\begin{aligned} & 0.5611 \\ & 1.4769 \\ & 0.4382 \end{aligned}$	-0.0452-0.0264-0.1426	$\begin{aligned} & 0.6442 \\ & 1.6094 \\ & 0.5354 \end{aligned}$	Ref. 17 Ref. 16 Present
$\left\|\begin{array}{l} \text { wing } \\ c_{\text {Faill }}^{2 v i s t} \\ R o l l \end{array}\right\|$	Wing Twist 6 Tail Roll	${ }_{\substack{2+3 \\ 3+3}}$	-0.1470-0.1156	$\begin{aligned} & 0.5422 \\ & i .4254 \end{aligned}$	-0.5713-0.5661	$\begin{aligned} & 0.6274 \\ & 0.5346 \end{aligned}$	Ref. 19 Present
wing 2wist 6512 ROLl	ning Bending 6 Tail Piteh	$\left\|\begin{array}{l} 2+4, \\ 1+3 \end{array}\right\|$	$\begin{aligned} & 0.2404 \\ & 0.2117 \end{aligned}$	$\begin{aligned} & C .5308 \\ & 0.4990 \end{aligned}$	$\begin{aligned} & -0.1262 \\ & -0.1303 \end{aligned}$	$\begin{aligned} & 0.5984 \\ & 0.5226 \end{aligned}$	Ref. 19 Present
wing pending 4 zall pitch	Wing Twist 4 Tall Roll	$\begin{aligned} & i+3, \\ & 2+4 \end{aligned}$	$\begin{aligned} & 0.6402 \\ & 0.6351 \end{aligned}$	$\begin{aligned} & 0.6202 \\ & 0.6475 \end{aligned}$	$\begin{aligned} & 0.3550 \\ & 0.2332 \end{aligned}$	$\begin{aligned} & 0.7180 \\ & 0.7243 \end{aligned}$	Ref. 19 present
wing Dending 6 Tall Pitch	wing Eending 6 Fail Piteh	$\begin{aligned} & 2+4 \\ & 2+4 \end{aligned}$	$\begin{aligned} & 0.1619 \\ & 0.1694 \end{aligned}$	$\begin{aligned} & 0.7565 \\ & 0.6265 \end{aligned}$	$\begin{aligned} & -0.4569 \\ & -0.5094 \end{aligned}$	$\begin{aligned} & 0.6729 \\ & 0.7317 \end{aligned}$	kef. 29 Present

TABLE 2
Cencralized Aerodynanic Force Cecficients
for AGARD Wing-Tail Intefference $N=3.0,2 / L=0.6$

Ceneralized Force in	Caused by Pressure in	1.1	Q1)	Qis	Metiod
wing.twist	*ing twist	1,1	0.0213 0.1059 0.1172.	0.1462 0.1446 0.1313	Rus. 20 Res. 21 Fresent
Wing bending	Wing twist	2, ${ }^{\circ}$	0.3801 0.2720 0.3357	0.0890 0.2207 0.0824	-Ref. 20
			0.3387	0.0824	Present
2ail roll	Wing twist	3,1	0.1253	$0.055 ;$	Ref. 20
			-0.0137	0.2024 -0.0325	Rest. 21 Yrusent
tail pitch	Wing twist	4.1	0.0855 -0.0065 -0.0276	0.0541 0.0317	Ref. 20 Ref. 21
			-0.0376	-0.0605	Prescit
Wing twist	Wing bending	1,2	-0.074\%	0.0302	Ref. 20
			-0.0294 --0.0437	0.0001	ReL. 21
Hing bending	Wing benaing	2,2	-0.0729	0.2457	Ref. 20
			-0.01 ${ }^{0} 7$	0.2464	Ref. 21
			-0.024	0.2218	Present
Tasi rois	Wing hending	. ${ }^{2,2}$	-0.0492 -0.0715	0.6615 -0.0612 -0.0908	Ref. 20 Kef. 21
			0.0358	-0.0905	Present:
Tail pitch	\#ing beriding	4,2	-0.0.06	0.0485	
			-0.0662 0.0338	-0.0104	$\begin{aligned} & \text { Ref. } 21 \\ & \text { Prescnt } \end{aligned}$
Tail rolp	rail roll	.3;3	0.0263	0.2622	Ref. 20
			0.0700	0.3170	Rei. 21
			0.0409	. 0.2893	present
Tail pitch	Tail 2011	4,3	0.0072	0.1264	Ref. 20°
			0.0365	C. 2208	Ref. 21
			0.0263	0.2240	Prescnt
Tail roli	rail pitch	3,4	0:4517	0.1632	Ref: 20
			0.4610	0.2168	Ref. 22
			0.5000	0.1874	Pressat
Tail pitch	Fail pitch	4,4	0.2965	0.2538	Pef. 20
			0.3162	. 0.3020	Pef. 21
			0.3724	0.2354	- Present

TABLE $3 a$
Generalized Aerodynamic Force cocfilicients
for AGARD Wing-Tail Interference $\mathrm{M}=0.8, \Delta z / \mathrm{L}=0.6$

Cencrallzed Force in	Caused by Pressure in	2,1	$k_{c}=$ Q 15	$Q_{i j}^{i j}$	$. Q_{1 j}$	$\begin{aligned} & -i,=5 \\ & Q_{i 1}^{\prime} \\ & \hline \end{aligned}$	$\begin{aligned} & k_{c}=0 \\ & Q_{i j} \\ & \hline \end{aligned}$	$\frac{2+i 2.5}{-0_{i j}^{n}}$
Wing twist	Wing bendind	1,2	-0.1208	-0.045\%	-0.1467	-0.0242	-0.1408	-0.0033
Wing bending	Wing bendine	2; 2	-0.2984	0.093 :	-0.3733.	0.2956	-0.3903	0.2536
Tail 5011	Wing bendin	$3 ; 2{ }^{\circ}$	-0.0642	-0.0595	-0.0311	-0.0124	0.0251	-0.0120
Tail.pitch	wing berdins	4,2	-0.0158	-0.0393	-0,0148	$\therefore 0.0042$	-0.0122	-0.0028

TABLE $3 b$
Generalized herodynamic Force Coufficients
for RGARD Wing-Tail Interferonce $\mathrm{M}=3.0, \Delta z / L=0.6$

Ceneralized Force in	Caused by Pressure in	1.5	$\begin{aligned} & k_{c}= \\ & Q_{11} \end{aligned}$	$\frac{5+i 1.5}{Q_{1 j}^{\prime \prime}}$	$\begin{aligned} & \vec{k}_{2}=1 \\ & Q_{i j} \end{aligned}$	$Q_{1 j}^{\prime \prime}$	$Q_{i j}$	$\begin{aligned} & 15+i 1.5 \\ & Q_{i j}^{n} \end{aligned}$
Wing twist 6 Tail roll	Wing twist 6 Tail roll	$\begin{aligned} & 1+3 \\ & 1+3 \end{aligned}$	-0.0298	0.4090°	0.0130	D: 4004	0.0464	0.3933
Wing bending 4 Tail pitch	Wing twist ${ }_{6}$ Tail roll	$\begin{aligned} & 2+4 \\ & 1+3 \end{aligned}$	0.2373	0.2855	0.2654°	0.2860	0.2872	0.2958

[^0]: +This work was supported by NASA Langley kesearch Center under NASA Grant NGR 22-004-030. The authors wish to express their appreciation to Dr. E. Carson Yates, Jr., monitor of the program, for the invaluable suggestions and stimulating discussions made in connection with this work. The authors would also like to thank Messrs. Kian Lam Kho and Joseph A. Puglesi Eor their assistance in obtaining the numerical
 results.

 * Graduate Student, Research Assistant
 ** Director, Computational Continuum Mechanics Program, Member AIAA

[^1]: * The equation for the elements are of the type $\overline{\mathrm{P}}=\overline{\mathrm{P}}_{0}+\xi_{2} \bar{P}_{1}+\eta_{2} \ddot{P}_{2}+\xi \eta_{3}(-1<\xi$ $<1 ;-1<\eta<1)$. This type of element is called hyperboloidal element and is described in details in Ref. 4.

[^2]: In Eqs. (36) to (43) compact matrix
 notations are used. Vectors and
 matrices are underlined. Tiladas in-
 dicate Laplace's transform or equiva-
 lent operation.

