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To Flutter
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Presented here is a new general formulation for the analysis

of steady and-unsteady, subsonic and supersonic aerodynamics for

complex aircraft configurations. The paper includes the

theoretical formulation, the numerical procedure, the description

of the program SOUSSA (Steady, Oscillatory and Unsteady, Subsonic

and Supersonic Aerodynamics) and numerical results. In particular,

generalized forces for fully unsteady (complex frequency)

aerodynamics for a wing-body configuration, AGARD wing-tail in-

terference in both subsonic and supersonic flows as well

as	 flutter analysis results are included in the paper.

The theoretical formulation is based upon an integral

equation presented in Refs. 1 and 2, which includes completely

arbitrary motion. Steady and oscillatory aerodynamic flows are

considered in Refs. 3 and 4 (enclosed here). A review of the

problem is given in Ref. 4 and therefore is not included here.

Here small-amplitude, fully transient response in the time

domain is considered. This yields the aerodynamic transfer

function (Laplace transform of the fully unsteady operator) for

frequency domain analysis (Ref. 5 enclosed here). This is
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particularly

whole aircr&

has now been

SOUSSA (Ref.

The new

described in

convenient for the linear systems analysis of the

Pt. The Formulation briefly outlined in Ref. 5

completed and implemented in the computer program

6,for subsonic and supersonic).

formulation, program and results will be fully

the proposed paper.

METHOD.OF SOLUTION

The method presented here is based upon a formulation

developed by Morino 
1,2 

For simplicity, only the incompressible

steady state is briefly described here. The formulation, by

making use of the Green function method applied to the equation

of the velocity potential, yields an integral equation relat-

ing the unknown potential on the surface of the body to its

known normal wash. By making use of the finite-element method,

and by the assumption that the potential is constant within

each quadrilateral element, the integral equation is approxi-

mated by a linear system of N equations relating N (unknown)

values of the potential to N (known) values of normal wash at

the centroids of N elements.

For the sake of generality and flexibility, in particular,

for structural analysis, the downwash is expressed in terms of

the generalized coordinates and generalized velocities.

From the potentials at centroids of elements, by an

averaging scheme (by which the potential at a corner is approxi-

mated by the average value of potentials at the centroids of

the elements in its immediate surroundings), the potentials at

f
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the nodal points are obtained and consequentially the potential

at any point on the surface can be expressed by a finite-element

-	 interpolating formulation with bi-linear local shape functions.

Finally, the pressure coefficients and generalized forces can

be evaluated by a simple finite-element procedure.

ASSESSMENT OF METHOD

Next, an assessment of the method is briefly considered.

In particular, new unique features of the methodology (not

existing in other methods) are highlighted. Also progress with

respect to Ref. 4 is emphasized.

(1) The program can analyze steady, oscillatory as well as fully

unsteady potential aerodynamics in both subsonic and super-

sonic regimes. To the authors' knowledge this is the only

computer program which can handle fully unsteady (complex

frequency) aerodynamics for complex configuration (e.g.,

wing-body-tail combination). No other program can even

handle oscillatory supersonic aerodynamics for complex

configurations.

(2) Evaluation of the normal wash for complex configurations

from prescribed three dimensional mode shapes (Ref. 4 was

limited to thin wings with vertical displacements.) is available.

Downwash due to turbalances is also included.

(3) In supersonic flow problems, the present method does not

require the use of diaphragms, in which, significantly

enough, leads to the unification of the program (i.e.,
t

r



the program covers the whole linearized potential flow

spectrum - steady, unsteady, subsonic and supersonic).

(Ref. 4 requires the use of diaphragms and hence is limited

to simple geometries.)

(4) Finite -element evaluation of pressure. (Ref. 4 used

finite-difference and was limited to thin wing wings)

(5) Evaluation of the generalized forces for arbitrary geometry

and arbitrary three dimensional mode shapes.

(6) The computer code SOUSSA can handle complete wing-body-

tail configuration with control surfaces. Results ob-

tained for control surfaces are in excellent agreement

with existing ones (see next section).

(7) Another unique feature of the present method on unsteady

potential flow problems in that the flutter analysis

often requires the analysis on a specific geometry for a

wide range of frequencies. In the present method, the

frequency-dependent coefficients of the aerodynamic

transfer matrix, may be expressed as a combination of complex

frequency-independent coefficients* with simple frequency-

dependent coefficients: the advantage is that every addi-

tional frequency analyses other than the first one requires

only a minimal amount of CPU time.

(8) In iterative procedures (for instance for optimal design)

it is generally required to predict generalized aerodynamic

loads due to a variety of vibration modes. In the present

method, the aerodynamic coefficient matrix is written as

the product of three matrices. The first and the third

*Bii , C	 Did, F i4 , G ij , OW Si3 , coefficients of Ref. 5,i
j

enclosed here
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(for the normal wash and for the evaluation of the

generalized forces) are mode dependent but very simple,

while the second one (relating pressure distribution to
normal wash distribution) is mode independent. By the

same reasoning as above, the CPU time required for addi-

tional modal analysis is reduced to a relatively negli-

gible level.

(9) Applications to flutter has been considered. The results

(see next section) are in good agreement with existing

ones.

NUMERICAL RESULTS

Typical numerical results obtained with SOUSSA are prevented

in this section. Due to spare limitations, the results are only

very briefly outlined.

Figures 1 and 2 are the lift and moment coefficients of

a rectangular wing oscillating in pitch with Mach number

ranging from 0 to 2.5. Results for the supersonic flow

were obtained without the use of diaphragms and have never

been presented before. The comparison against Ref. 11 is

in general, in excellent agreements. Figures 3, 4 and 5

present the pressure distributions of a rectangular wing

in steady subsonic and supersonic flow, and again they are

in very good agreements. Figures 6, 7 and 8 are results

for a wing-body configuration in both steady and fully un-

steady flow, for both subsonic and supersonic speeds.
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Figures 6 and 7 are presented just to demonstrate ti.e

unique feature of the present method over all existing

ones (i.e., fully unsteady flow). Figures 9 and 10 in-

clude the results for simple wings with control surface

In steady and oscillatory flows. Figure 11 presents

flutter applications (in excellent agreement with the

results of Ref. 17). Tables 1 through 3 are the

generalized forces for an AGARD wing-tail configuration

In quasi-steady and oscillatory flow in comparison with

existing methods.

Further results, such as the fully unsteady aerodynamic

analysis of the AGARD wing-tail configuration and other

cc:plex configuration (with control surfaces) will be

Included in the proposed paper.

In conclusion, whereas only simple configuration results

are presented, (in order to assess the accuracy),It is the

objective of the proposed paper to emphasize the generality,

flexibility, efficiency of the present method. Last, but not

least the present method provides a unified approach to cover

the whole linearized potential flow spectrum and very

limited human intervention is required in using the computer
code SOUSSA.

r
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CONCLUSIONS

There exists several methods to analyze the problem of

wing-body, wing-tail interactions. However, it is apparent that

the present method, embedded in the computer program SOUSSA, is

unique in the following aspects:

1. It provides a unified approach for steady, oscillatory

and fully unsteady, subsonic and supersonic aerodynamic

F	 flows.

2. It can be applied to arbitrarily-comp",x configurations.

Wing-body-tail configurations with control surface have

been analyzed. (No existing result is available for

comparisons. However, simple wing with control surface

results shows that the present method is in good agree-

ment with existing ones.)

3. It is computationally extremely general, flexible, ef-

ficient and above all, accurate. The elimination of

diaphragms in supersonic flow improved considerably the

simplicity and efficiency of the code.

4. SOUSSA is the only existing program that can analyze fully

unsteady complex- configuration potential aerodynamics in

subsonic or supersonic regimes. It is also the only

program capable of handling oscillatory supersonic aero-

dynamics for complex configurations.

5. In contrast to existing methods, which in many instances

requires extensive user's background in aerodynamics

and familiarity with the specific method, the present.
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.code requires very limited human itervention and is

extremely easy to use.

6. Flutter, and optimal design analyses requires evaluation

of the aerodynamic influence coefficients for several

frequencies and mode shapes. With the unique features

mentioned above, the computer time that normally would

have been required is dramatically reduced. This is to be

added to the fact that preliminary versions of the program

already required less computer time than other existing

programs (Ref.  4) .

7. ;applications to flutter indicate good agreement with

existing results.
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