6,936 research outputs found

    M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets

    Get PDF
    We perform three-dimensional numerical simulations of stellar winds of early-M dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an important role in the angular momentum evolution of the star, possibly explaining the large distribution of periods in field dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial plane carries most of the stellar angular momentum, but there is no preferred colatitude contributing to mass loss, as the mass flux is maximum at different colatitudes for different stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass fluxes and wind total pressures ptotp_{\rm tot} (defined as the sum of thermal, magnetic and ram pressures). Because planetary magnetospheric sizes are set by pressure equilibrium between the planet's magnetic field and ptotp_{\rm tot}, variations of up to a factor of 33 in ptotp_{\rm tot} (as found in the case of a planet orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii of about 20 percent along the planetary orbital path. In analogy to the flux of cosmic rays that impact the Earth, which is inversely modulated with the non-axisymmetric component of the total open solar magnetic flux, we conclude that planets orbiting M dwarf stars like DT~Vir, DS~Leo and GJ~182, which have significant non-axisymmetric field components, should be the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective thick atmosphere/large magnetosphere of their own.Comment: 16 pages, 9 figures, to appear in MNRA

    Modeling the RV jitter of early M dwarfs using tomographic imaging

    Full text link
    In this paper we show how tomographic imaging (Zeeman Doppler Imaging, ZDI) can be used to characterize stellar activity and magnetic field topologies, ultimately allowing to filter out the radial velocity (RV) activity jitter of M-dwarf moderate rotators. This work is based on spectropolarimetric observations of a sample of five weakly-active early M-dwarfs (GJ 205, GJ 358, GJ 410, GJ479, GJ 846) with HARPS-Pol and NARVAL. These stars have v sin i and RV jitters in the range 1-2 km/s and 2.7-10.0 m/s rms respectively. Using a modified version of ZDI applied to sets of phase-resolved Least-Squares- Decon- volved (LSD) profiles of unpolarized spectral lines, we are able to characterize the distribution of active regions at the stellar surfaces. We find that darks spots cover less than 2% of the total surface of the stars of our sample. Our technique is e cient at modeling the rotationally mod- ulated component of the activity jitter, and succeeds at decreasing the amplitude of this com- ponent by typical factors of 2-3 and up to 6 in optimal cases. From the rotationally modulated time-series of circularly polarized spectra and with ZDI, we also reconstruct the large-scale magnetic field topology. These fields suggest that bi-stability of dynamo processes observed in active M dwarfs may also be at work for moderately active M dwarfs. Comparing spot distributions with field topologies suggest that dark spots causing activity jitter concentrate at the magnetic pole and/or equator, to be confirmed with future data on a larger sample.Comment: 34 pages, accepted for publication in MNRA

    Quadrupolar Order in Isotropic Heisenberg Models with Biquadratic Interaction

    Get PDF
    Through Quantum Monte Carlo simulation, we study the biquadratic-interaction model with the SU(2) symmetry in two and three dimensions. The zero-temperature phase diagrams for the two cases are identical and exhibit an intermediate phase characterized by finite quadrupole moment, in agreement with mean-field type arguments and the semi-classical theory. In three dimensions, we demonstrate that the model in the quadrupolar regime has a phase transition at a finite temperature. In contrast to predictions by mean-field theories, the phase transition to the quadrupolar phase turns out to be of the second order. We also examine the critical behavior in the two marginal cases with the SU(3) symmetry.Comment: 4 pages 5 figure

    Complex magnetic topology and strong differential rotation on the low-mass T Tauri star V2247 Oph

    Full text link
    From observations collected with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we report the detection of Zeeman signatures on the low-mass classical TTauri star (cTTS) V2247Oph. Profile distortions and circular polarisation signatures detected in photospheric lines can be interpreted as caused by cool spots and magnetic regions at the surface of the star. The large-scale field is of moderate strength and highly complex; moreover, both the spot distribution and the magnetic field show significant variability on a timescale of only one week, as a likely result of strong differential rotation. Both properties make V2247Oph very different from the (more massive) prototypical cTTS BPTau; we speculate that this difference reflects the lower mass of V2247Oph. During our observations, V2247Oph was in a low-accretion state, with emission lines showing only weak levels of circular polarisation; we nevertheless find that excess emission apparently concentrates in a mid-latitude region of strong radial field, suggesting that it is the footpoint of an accretion funnel. The weaker and more complex field that we report on V2247Oph may share similarities with those of very-low-mass late-M dwarfs and potentially explain why low-mass cTTSs rotate on average faster than intermediate mass ones. These surprising results need confirmation from new independent data sets on V2247Oph and other similar low-mass cTTSs.Comment: MNRAS (in press) - 12 pages, 9 figure

    Biocorrosion of mild steel in drinking water conditions and disinfection

    Get PDF
    [Excerpt] Introduction: Corrosion in drinking water distribution system is a costly phenomenon, mainly due to the replacement of altered pipes. Bio..corrosion is also a problem in term of public health because of the suspected protection brought by the corroded surface to potentially harmful microorganisms, especially bacteria. The protection effect of corrosion is particularly relevant in the presence of disinfectant. In drinking water are present the conditions leading to microbialy induced corrosion: bacteria and metal-containing substrata joined closely together as biofilm attached to distribution system pipe walls. [...]info:eu-repo/semantics/publishedVersio

    High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

    Full text link
    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of 0.6×1040.6\times10^4 photons/(s⋅\cdotmW⋅\cdotMHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering

    A method to decrease the harmonic distortion in Mn-Zn ferrite/PZT and Ni-Zn ferrite/PZT layered composite rings exhibiting high magnetoelectric effects

    Get PDF
    International audienceWe have investigated the magnetoelectric (ME) effect in layered composite rings subjected to circumferential AC magnetic fields and DC magnetic fields in radial, axial or circumferential directions. Bilayer samples were obtained combining different grades of commercial Mn-Zn ferrites or Ni-Zn ferrites with commercial lead zirconate titanate (PZT). Mn-Zn ferrites with low magnetostriction saturation () and low magneto-crystalline anisotropy constants show high ME capabilities when associated with PZT in ring structures. In certain conditions, these ME effects are higher than those obtained with Terfenol-D/PZT composites in the same layered ring structure. Magnetostrictive and mechanical characterizations have given results that explain these high ME performances. Nevertheless, Mn-Zn ferrite/PZT composites exhibit voltages responses with low linearity especially at high signal level. Based on the particular structure of the ME device, a method to decrease the nonlinear harmonic distortion of the ME voltages is proposed. Harmonic distortion analysis of ME voltages measured in different configurations allows us to explain the phenomenon

    Activity and Magnetic Field Structure of the Sun-Like Planet Hosting Star HD 1237

    Get PDF
    We analyse the magnetic activity characteristics of the planet hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements consistent with our ZDI analysis, with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on shape of the extracted Stokes V profile but does result in a small increase in the S/N (∌\sim 7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also impacts the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI maps solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes (∌\sim45 degrees). Similar magnetic field maps are recovered from data acquired five months apart. Future work will investigate how this surface magnetic field distribution impacts the coronal magnetic field and extended environment around this planet-hosting star.Comment: Accepted for publication in A&
    • 

    corecore