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ABSTRACT
We perform three-dimensional numerical simulations of stellar winds of early-M-dwarf stars.
Our simulations incorporate observationally reconstructed large-scale surface magnetic maps,
suggesting that the complexity of the magnetic field can play an important role in the angular
momentum evolution of the star, possibly explaining the large distribution of periods in field
dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies
among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial
plane carries most of the stellar angular momentum, but there is no preferred colatitude
contributing to mass-loss, as the mass flux is maximum at different colatitudes for different
stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass
fluxes and wind total pressures ptot (defined as the sum of thermal, magnetic and ram pressures).
Because planetary magnetospheric sizes are set by pressure equilibrium between the planet’s
magnetic field and ptot, variations of up to a factor of 3 in ptot (as found in the case of a planet
orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii
of about 20 per cent along the planetary orbital path. In analogy to the flux of cosmic rays that
impact the Earth, which is inversely modulated with the non-axisymmetric component of the
total open solar magnetic flux, we conclude that planets orbiting M-dwarf stars like DT Vir,
DS Leo and GJ 182, which have significant non-axisymmetric field components, should be
the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective
thick atmosphere/large magnetosphere of their own.

Key words: MHD – methods: numerical – stars: low-mass – stars: magnetic field – planetary
systems – stars: winds, outflows.

1 IN T RO D U C T I O N

Stellar winds are believed to explain the observed rotational brak-
ing of main-sequence stars with outer convective envelopes (spectral
types later than mid-F), as they act as an efficient removal mecha-
nism for the star’s angular momentum (e.g. Schatzman 1962; Weber
& Davis 1967; Mestel 1968; Belcher & MacGregor 1976). Because
mass-loss takes place throughout the star’s main-sequence life, as
the stars age, they spin down. For solar-mass main-sequence stars,

� E-mail: aav21@st-andrews.ac.uk

it has been both empirically recognized (Skumanich 1972) and the-
oretically shown (e.g. Mestel & Spruit 1987) that the stellar angular
rotation velocity �∗ scales with the age t of the star as �∗ ∝ t−1/2.

By comparing colour–period diagrams for open clusters at dif-
ferent ages, it has been suggested that, as the cluster ages, stars
that were once part of the spread group of fast rotators evolve into
the more defined sequence of slow/moderate rotators as they spin
down (Barnes 2003; Barnes & Kim 2010). This evolution appears
to occur more rapidly for more massive stars, indicating that the
time for a star to spin down increases with decreasing stellar mass.
Meibom et al. (2011) estimate that G dwarfs should make this tran-
sition in a time-scale �150 Myr, while early to mid-K dwarfs should
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M-dwarf stellar winds 1163

take 150–300 Myr, and late K dwarfs would take ∼300–600 Myr
to evolve from the sequence of fast rotators to the moderate/slow
rotator sequence.

If the same trend continues down to the lower mass-object range,
one expects the spin-down time-scale to be even longer for M-
dwarf (dM) stars. Indeed, Delorme et al. (2011) showed that by
the Hyades age (∼625 Myr), dM stars with masses above 0.5 M�
have already converged towards the tight period–colour sequence
(also shown as period–mass relation). By investigating a sample of
field-dM stars in the fully convective regime (masses � 0.35 M�),
Irwin et al. (2011) showed that kinematically young (thin disc, ages
∼ Gyr) objects rotate faster than the kinematically old (thick disc,
ages ∼7–12 Gyr) objects, in agreement with previous expectations
and also with activity lifetimes of late-dM stars (West et al. 2008,
≈7 Gyr).

None the less, recent studies have revealed an interesting be-
haviour for field dM stars less massive than 0.55 M� (Irwin et al.
2011 from Mearth data; McQuillan, Aigrain & Mazeh 2013 from
Kepler data). First, a wide range of rotation rates is observed, where
a population of rapidly rotating dM stars coexist with a significant
population of slow rotators (possibly due to populations of stars
with different ages). Secondly, a trend exists in the upper envelope
of the period–mass relation, which changes sign at masses around
0.55 M�. Note that the upper envelope of the period–mass rela-
tion is defined by the slowest rotating stars at each mass bin. For
M∗ � 0.55 M�, McQuillan et al. (2013) found that the period of the
slowest rotating objects rises with decreasing mass. This indicates
that some dM stars might lose angular momentum more efficiently
than other dM stars and higher mass stars. These observations rep-
resent a challenge for models of rotational evolution cool stars.
New analytical models have been derived by Reiners & Mohanty
(2012), assuming a monopolar magnetic field, whose intensity does
not depend on the stellar mass nor time. Within this framework,
the increase of the braking time-scale towards decreasing mass ob-
served close to the fully convective boundary naturally arises from
the strong decrease of stellar radii in this mass range. In addition,
they argue that the existence of slowly rotating fully convective
field dMs, could be accounted for by assuming that the rotation rate
�sat at which activity saturation occurs on lower mass stars is much
larger than �sat of higher mass stars. We will argue in Section 5.2
that taking into account the topology of the magnetic field might be
an alternative (and perhaps additional) explanation.

In order to reproduce rotational evolution of stars in open clus-
ters, empirically motivated revisions in the standard solar wind-
prescription have been used (Bouvier, Forestini & Allain 1997;
Irwin & Bouvier 2009; Reiners & Mohanty 2012; Gallet & Bouvier
2013). These modifications, for example, allow for the presence of
different magnetic field geometries (Kawaler 1988), angular veloc-
ity saturation (Stauffer & Hartmann 1987; Barnes & Sofia 1996),
decoupling between the radiative core and the convective enve-
lope (MacGregor & Brenner 1991). The downside of the inclusion
of empirical phenomena in such prescriptions is that they introduce
parameters that are arbitrarily adjusted to fit the data. It is, therefore,
crucial to understand from theoretical principles the role that winds
of low-mass stars play on the extraction of angular momentum.
Recent works have provided important steps towards that direction
(Matt et al. 2012; Reiners & Mohanty 2012), but the role of different
magnetic topologies has not yet been investigated.

The magnetic field that emerges at the surface of the stars is
expected to present different characteristics, reflecting the different
stellar internal structures and operating dynamo mechanisms. This
expectation is confirmed by recent surveys that probe the large-scale

topology of the surface magnetic fields of dM stars (Donati et al.
2008; Morin et al. 2008, 2010). Morin et al. (2008) showed that
mid-dM stars (either fully convective or with a small radiative core)
exhibit strong poloidal axisymmetric dipole-like surface magnetic
topologies, while the partially convective ones present weaker, non-
axisymmetric fields with significant toroidal component (Donati
et al. 2008). The picture that arises from the analysis of a more
recent sample of late-M objects (Morin et al. 2010) shows two
distinct populations: one with very strong axisymmetric poloidal
fields (similar to the mid-M stars) and another with significant non-
axisymmetric component, plus a significant toroidal component.

The effect that complex magnetic field topologies might have
on stellar winds has not been systematically investigated in the
literature, as most of the theoretical work developed so far relies on
simplified, axisymmetric geometries for the magnetic field. Vidotto
et al. (2010a) performed simulations of stellar winds of young Suns
with different alignments between the rotation axis and the magnetic
dipole axis. In those simulations, angular momentum losses are
enhanced by a factor of 2 as one goes from the aligned case to the
case where the dipole is tilted by 90◦ (i.e. as non-axisymmetry is
increased). In this work, the variations of surface characteristics are
observationally determined and constitute therefore an extra step
towards more realistic models of stellar winds of low-mass stars.

To investigate the behaviour of angular momentum loss of low-
mass stars, we present in this paper a comparative study of stellar
winds of a sample of early-dM stars (spectral types M0 to M2.5), for
which surface magnetic field maps have been obtained. Section 2
presents our sample of stars. Sections 3 and 4 describe the numeri-
cal model used in the simulations and their results, respectively. A
discussion about the effects of the field topology on angular mo-
mentum losses are presented in Section 5, where we also discuss
possible effects on orbiting planets. In Section 6, we present our
summary and conclusions of this work.

2 SA M P L E O F STA R S

The stars considered in this study consist of six early-M stars (spec-
tral types M0 to M2.5), for which the large-scale surface magnetic
field maps have been reconstructed from a series of circular polar-
ization spectra using the Zeeman–Doppler Imaging (ZDI) technique
(e.g. Donati & Brown 1997; Morin 2012). In this work, we concen-
trate on the early-dM stars and use the maps that were published in
Donati et al. (2008). Fig. 1 presents the reconstructed surface field of
these stars and Table 1 presents a summary of their characteristics.
Our targets, namely GJ 49, DS Leo, DT Vir, OT Ser, GJ 182 and
CE Boo, present more complex surface magnetic fields than V374
Peg (Donati et al. 2006b), a mid-dM star that was investigated in a
previous model (Vidotto et al. 2011b).

We note that these six stars comprise two groups with similar
characteristics in the mass–period diagram, as can be seen in fig. 14
of Donati et al. (2008). In the first group, GJ 49, DS Leo and CE
Boo have rotational periods of ∼15 d, while, in the second group,
DT Vir, OT Ser and GJ 182 rotate faster with periods of ∼3 d. They
all present similar masses. Despite sharing similar characteristics,
members of each group present different surface magnetic field
topologies and intensities. For this reason, this sample is useful for
investigating the effects that different magnetic field characteristics
play on stellar winds. To account for the observed three-dimensional
(3D) nature of their magnetic fields, 3D stellar wind models are
required.
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1164 A. A. Vidotto et al.

Figure 1. The radial component of the observationally reconstructed magnetic field of the stars in our sample (Donati et al. 2008). The black solid line shows
an iso-contour of Br = 0.

Table 1. Characteristics of our sample of stars. The columns are, respectively: the star
name, the observation epoch, the stellar spectral type, mass M∗, radius R∗, rotation
period Prot, the unsigned surface magnetic fluxes (�0, equation 6) and the fractional
energy in the poloidal axisymmetric modes (faxi). Values are from Donati et al. (2008).

Star Observation Spectral M∗ R∗ Prot �0 faxi

ID Epoch Type (M�) (R�) (d) (1023 Mx)

GJ 49 Jul/07 M1.5 0.57 0.51 18.6 2.6 0.67
CE Boo Jan/08 M2.5 0.48 0.43 14.7 11 0.96
DS Leo Dec/07 M0 0.58 0.52 14.0 3.9 0.16

GJ 182 Jan/07 M0.5 0.75 0.82 4.35 30 0.17
OT Ser Jul/07 M1.5 0.55 0.49 3.40 13 0.86
DT Vir Jan/07 M0.5 0.59 0.53 2.85 9.4 0.12

3 ST E L L A R W I N D M O D E L

To simulate the stellar winds of the dM stars in our sample,
we use the 3D magnetohydrodynamics (MHD) numerical code
BATS-R-US (Powell et al. 1999). BATS-R-US solves the ideal MHD
equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+ ∇ ·

[
ρu u +

(
P + B2

8π

)
I − B B

4π

]
= ρg, (2)

∂B
∂t

+ ∇ · (u B − B u) = 0, (3)

∂ε

∂t
+ ∇ ·

[
u

(
ε + P + B2

8π

)
− (u · B) B

4π

]
= ρg · u, (4)

where the eight primary variables are the mass density ρ, the plasma
velocity u = {ur, uθ , uϕ}, the magnetic field B = {Br, Bθ , Bϕ} and
the gas pressure P. The gravitational acceleration due to the star
with mass M∗ and radius R∗ is given by g, and ε is the total energy
density given by

ε = ρu2

2
+ P

γ − 1
+ B2

8π
, (5)

where γ is the polytropic index (p ∝ ργ ). We consider an ideal gas,
so P = nkBT , where kB is the Boltzmann constant, T is the tem-
perature, n = ρ/(μmp) is the particle number density of the stellar
wind, μmp is the mean mass of the particle. In this work, we adopt
γ = 1.1 and μ = 0.5. The physical processes that are responsible for
heating the solar corona and accelerating the solar wind are not yet

known. Cranmer (2009) provides a recent review on the solar wind
acceleration, which has been attributed to waves and turbulence
in open flux tubes (e.g. Hollweg 1973; Suzuki & Inutsuka 2006;
Cranmer, van Ballegooijen & Edgar 2007), magnetic reconnection
events (e.g. Fisk, Schwadron & Zurbuchen 1999; Schwadron, Mc-
Comas & DeForest 2006), etc (see also McComas et al. 2007). In
spite of the current lack of a complete theoretical model (i.e. from
first principle Physics starting at a photospheric level upwards to the
corona) for the acceleration of the solar wind, empirical correlations
have been used to predict the solar wind characteristics at different
distances (Wang & Sheeley 1990; Arge & Pizzo 2000; Cohen et al.
2007; Evans et al. 2012). These correlations are constrained by di-
rect observation of the solar wind. It is however not clear how they
could be applied to winds of different solar-type stars, since the lack
of direct observations of solar-like winds prevent a direct scaling
of the empirical correlations observed in the solar wind. Although
having similar masses, radii and effective temperatures, solar-like
stars might have considerable different characteristics than those of
the Sun and that can affect their wind properties. The variety of
observed rotation rates, intensities and topologies of their magnetic
fields, X-ray luminosities and coronal temperatures of cool, dwarf
stars suggest that their winds might be different from the solar one
(see discussion in Vidotto 2013). In this work, we adopt a simpli-
fied wind-driving mechanism, where we assume the wind to be a
polytrope, where the polytropic index γ is a free parameter of the
model. We keep the same γ for all the simulations, so as to have a
homogeneous parameter space for all the cases studied. The wind
solutions we found could to be affected if a different acceleration
mechanism is chosen, but it is beyond the scope of this paper to
perform such an investigation.

 at U
niversity of St A

ndrew
s on Septem

ber 9, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


M-dwarf stellar winds 1165

At the initial state of the simulations, we assume that the wind is
thermally driven (Parker 1958). The stellar rotation period Prot, M∗
and R∗ are given in Table 1. At the base of the corona (r = R∗), we
adopt a wind coronal temperature T0 = 2 × 106 K and wind number
density n0 = 1011cm−3. With this numerical setting, the initial so-
lution for the density, pressure (or temperature) and wind velocity
profiles are fully specified. Note that the wind base density is an un-
constrained input parameter of global stellar wind models. To better
constrain the coronal base density, more precise measurements of
mass-loss rates of dM stars are desired. However, mass-loss rates of
cool stars are notoriously difficult to observe (e.g. Wood et al. 2005).
Traditional mass-loss signatures, such as P Cygni line profiles, are
not observed in dM stars due to the optically thin nature of their stel-
lar winds. Estimates of mass-loss rates of dM stars in the literature
are rather controversial and span more than five orders of magni-
tude, ranging from a subsolar value of Ṁ 
 4 × 10−15 M� yr−1

(Wood et al. 2001) to supersolar values of Ṁ 
 10−10 M� yr−1

(Mullan et al. 1992). The values of Ṁ derived from our simulations
fall in the range of Ṁ predicted by several estimates, but it is still
not properly constrained.

To complete our initial numerical set up, we incorporate the
radial component of the magnetic field Br reconstructed from ob-
servations using the ZDI technique (Fig. 1). This is similar to the
method presented in Vidotto et al. (2012) and Jardine et al. (2013).
Table 1 shows the observed unsigned (large-scale) surface mag-
netic flux �0 (cf. equation 6 below) and the fractional energy in the
poloidal axisymmetric modes faxi. The magnetic field that is initially
considered in the grid is derived from extrapolations of observed
surface radial magnetic maps using the potential-field source sur-
face (PFSS) method (Altschuler & Newkirk 1969; Jardine, Collier
Cameron & Donati 2002). The non-potential part of the observed
field is not incorporated in our simulations, as it has been shown that
stellar winds are largely unaffected by the non-potential, large-scale
surface field (Jardine et al. 2013). The PFSS model assumes that
the magnetic field is potential (∇ × B = 0) up to a radial distance
r = rSS, which defines the source surface. Beyond rSS, all the mag-
netic field lines are considered to be open and purely radial, as a
way to mimic the effects of a stellar wind. For all the cases studied
here, we take rSS = 4R∗, but we note that different values of rSS

produce the same final state solution for the simulations (Vidotto
et al. 2011b).

Once set at the initial state of the simulation, the values of the
observed Br are held fixed at the surface of the star throughout the
simulation run, as are the coronal base density and thermal pres-
sure. A zero radial gradient is set to the remaining components
of B and u = 0 in the frame corotating with the star. The outer
boundaries at the edges of the grid have outflow conditions, i.e. a
zero gradient is set to all the primary variables. The rotation axis
of the star is aligned with the z-axis, and the star is assumed to
rotate as a solid body. Our grid is Cartesian and extends in x, y
and z from −20 to 20R∗, with the star placed at the origin of the
grid. BATS-R-US uses block adaptive mesh refinement, which allows
for variation in numerical resolution within the computational do-
main. The finest resolved cells are located close to the star (for
r � 2R∗), where the linear size of the cubic cell is 0.0097R∗. The
coarsest cell has a linear size of 0.31R∗ and is located at the outer
edges of the grid. The total number of cells in our simulations is
around 80 million. As the simulations evolve in time, both the wind
and magnetic field lines are allowed to interact with each other. The
resultant solution, obtained self-consistently, is found when the sys-
tem reaches steady state in the reference frame corotating with the
star.

4 SI MULATI ON R ESULTS

4.1 Configuration of the embedded magnetic field

4.1.1 Alfvén surfaces

Fig. 2 shows the final configuration of the magnetic field lines
obtained through self-consistent interaction between magnetic and
wind forces after the simulations reached steady state. Although we
assume the magnetic field is potential in the initial state of our sim-
ulations, this configuration is deformed when the interaction of the
wind particles with the magnetic field lines (and vice-versa) takes
place. Fig. 2 also shows the Alfvén surface SA in grey. This surface
is defined as the location where the wind velocity reaches the local
Alfvén velocity (vA = B(4πρ)−1/2). Inside SA, where the magnetic
forces dominate over the wind inertia, the stellar wind particles are
forced to follow the magnetic field lines. Beyond SA, the wind iner-
tia dominates over the magnetic forces and, as a consequence, the
magnetic field lines are dragged by the stellar wind. In models of
stellar winds, the Alfvén surface has an important property for the
characterization of angular momentum losses, as it defines the lever
arm of the torque that the wind exerts on the star (cf. equation A6).
Contrary to the results obtained on wind models with axisymmetric
magnetic fields, the Alfvén surfaces of the objects investigated here
have irregular, asymmetric shapes, which can only be captured by
fully three-dimensional wind models. Note that these odd shapes are
consequence of the irregular distribution of the observed magnetic
field.

4.1.2 Effective source surface

The PFSS method has proven to be a fast and simple way to extrap-
olate surface magnetic fields into the stellar coronal region (Jardine
et al. 1999, 2002; Vidotto et al. 2013). It is also used here as the
initial conditions for our simulations. The free parameter of the
PFSS method is the radius rSS of the source surface, beyond which
the magnetic field lines are assumed open and radial (Section 3).
To constrain values of rSS to be used by PFSS methods, we wish to
provide here, from our fully 3D MHD models, an effective radius
of the source surface. Motivated by the approach used in Riley et al.
(2006), we define an ‘effective source surface’ (reff

SS ) for the MHD
models as the radius of the spherical surface where 97 per cent of
the average magnetic field is contained in the radial component (i.e.
〈|Br|〉/〈|B|〉 = 0.97). For the fastest rotating stars in our sample (DT
Vir, OT Ser, GJ 182), the ratio 〈|Br|〉/〈|B|〉 does not reach the 97 per
cent level, as in these cases the Bϕ contribution has a relatively
larger weight. In such cases, we take reff

SS to be the position where
〈|Br|〉/〈|B|〉 is maximum. Table 2 shows the derived values of reff

SS .
For the sample of stars analysed in this paper, we find that on av-
erage reff

SS 
 3.65 ± 0.77R∗, indicating a compact region of closed
field lines. We note that this size is similar to the usual adopted size
of 2.5 R� from PFSS methods of the solar coronal magnetic field.

4.2 Derived properties of the stellar winds

Table 2 presents the properties of the stellar wind derived from
our simulations. The unsigned observed surface magnetic flux is
defined as

�0 =
∮

S∗
|Br (R∗, θ, ϕ)|dS∗ (6)

 at U
niversity of St A

ndrew
s on Septem

ber 9, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1166 A. A. Vidotto et al.

Figure 2. The final configuration of the magnetic field lines after the wind solution has relaxed in the grid. Overplotted at the surface of the star is the
observationally reconstructed stellar magnetic field (Donati et al. 2008), used as boundary condition for the radial magnetic field. Alfvén surfaces are shown
in grey. Note their irregular, asymmetric shapes due to the irregular distribution of the observed field.
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Table 2. Derived values from the simulations. The columns are, respec-
tively: the star name, the unsigned open magnetic fluxes (�open), the effective
radius of the source surface derived from the MHD models (reff

ss ), mass-loss
rate contrast ratio (fṀ = max(ρur )/ min(ρur )) calculated at a distance r 

19R∗ (near the edge of our simulation domain), the angular momentum-loss
rate calculated from our 3D simulations (J̇ ), the ratio between our derived
J̇ and from a simplified 1D model (J̇ /J̇ 1D), the instantaneous spin-down
time (τ ) and the estimated age of the star (see the text).

Star �open reff
ss fṀ J̇ J̇ /J̇ 1D τ Age

ID (�0) (R∗) (1032 erg) (Myr) (Myr)

GJ 49 0.56 2.8 1.2 0.39 0.45 1816 1190
CE Boo 0.46 4.6 2.4 1.4 0.15 396 125
DS Leo 0.45 3.6 1.4 0.96 0.50 1037 710
GJ 182 0.50 4.6 4.1 85 0.36 120 12
OT Ser 0.48 3.0 3.4 12 0.20 292 −
DT Vir 0.30 3.6 2.8 16 0.39 328 −

(Table 1) and the unsigned open magnetic flux as

�open =
∮

Ssph

|Br (r, θ, ϕ)|dSsph. (7)

The former is integrated over the surface of the star S∗ and the latter
over a spherical surface Ssph at a large distance r from the star, where
all the field lines are open. Fig. 3(a) shows the unsigned magnetic
flux (dashed line) as a function of distance for the simulation of GJ
49. Note that for large distances, the flux is �open and is conserved

in our simulation. In our simulations, magnetic fluxes are conserved
within 1.5 per cent.

4.2.1 Mass flux

The mass-loss rate Ṁ is defined as the flux of mass integrated across
a closed surface S

Ṁ =
∮

S

ρu · dS =
∮

ρurdSsph, (8)

where Ṁ is a constant of the wind. Fig. 3(a) shows the mass-loss rate
(solid line) as a function of distance for the simulation of GJ 49. In
our simulations, Ṁ are conserved within 0.2 per cent at most. Fig. 4
shows the distribution of mass flux ρur across a spherical surface of
radius ∼19R∗ (close to the edge of our simulation domain). As can
be seen, the mass flux is not homogeneously distributed, as would
be the case of a spherically symmetric wind. At r 
 19R∗, the mass
flux has a contrast ratio fṀ = max(ρur )/ min(ρur ) of a factor of up
to ∼4 (see Table 2), but we note that at closer distances to the star,
the distribution of mass flux is different. Mass fluxes are therefore
redistributed latitudinally with distances by meridional flows. As
our simulation domain extends only out to 20R∗(∼0.04 au), we do
not know if this trend is kept for larger r. In the case of the solar
wind, Cohen (2011) finds, from in situ measurements of the solar
wind taken by the spacecraft WIND and the Advanced Composition
Explorer mission (near 1 au) and by Ulysses (at high heliographic

Figure 3. Radial dependence of (a) mass-loss rate (solid line) and unsigned magnetic flux (dashed line) and (b) total angular momentum-loss rate (solid
line) for GJ 49, illustrating conservation of these quantities in our simulations. Panel (b) also shows how the magnetic torque (dashed line) and the angular
momentum of the material (dotted line) contribute to J̇ (equation 9).

Figure 4. Distribution of mass flux ρur across a spherical surface of radius r 
 19R∗ (close to the edge of our simulation domain). The more asymmetric
topology of the stellar magnetic field results in more asymmetric mass fluxes.
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latitudes between 3 and 5 au), that the solar mass-loss rate is roughly
the same at different latitudes for large distances. Note also that the
mass-loss rate of the solar wind has a spread of more than one order
of magnitude (figs 1 and 3 from Cohen 2011), which could mask
smaller variations predicted in our theoretical studies.

In addition, we note that the mass flux profile is essentially mod-
ulated by the local value of |Br|, which share roughly the same
characteristics as the surface |Br|. Therefore, we conclude that the
more non-axisymmetric topology of the stellar magnetic field re-
sults in more asymmetric mass fluxes. For example, if we were
to place a spacecraft that can only provide mass flux measure-
ments at a single location of the wind, such a spacecraft would
estimate total mass-loss rates incorrectly, because it would neglect
longitudinal and latitudinal differences. In addition, latitudinal and
longitudinal variations in mass flux should also affect the distances
and shapes of astropauses,1 which would lack symmetry due to the
non-axisymmetric nature of the stellar magnetic field.

4.2.2 Angular momentum flux

The outflow per unit area of the z-component of the angular mo-
mentum flux across a closed spherical surface Ssph is

J̇ =
∮

Ssph

[
−�BϕBr

4π
+ �uϕρur

]
dSsph, (9)

where � = (x2 + y2)1/2 is the cylindrical radius. Appendix A shows
the derivation of equation (9), which follows from the derivation
presented in Mestel & Selley (1970) and Mestel (1999). We find
that angular momentum-loss rates range between 1031 to almost
1034 erg for the stars in our sample.2 Fig. 3(b) shows the angular
momentum-loss rate as a function of distance for the simulation of
GJ 49. In our simulations, J̇ are conserved within 5 per cent at most.

Table 2 also presents an estimate of the instantaneous time-scale
for rotational braking, defined as τ = J/J̇ , where J is the angular
momentum of the star. If we assume a spherical star with a uniform
density, rotating at a rate �∗, then J = 2

5 M∗R2
∗�∗ and the time-scale

is estimated as

τ 
 8.9 × 1036

J̇ [erg]

(
M∗
M�

) (
1d

Prot

) (
R∗
R�

)2

Myr. (10)

The constant in the equation above (8.9 × 1036 Myr) equals
2
5 M� R2�(2π/Prot), for Prot = 1 d. The values of τ obtained here
are representative of the epoch when the magnetic surface maps
were derived and it is likely that they vary with the evolution of
the magnetic field topology of the star. In the Sun, for example,
angular momentum loss may be enhanced in certain phases of the
stellar cycle, alternating between epochs with greater and smaller
releases of angular momentum (Pinto et al. 2011). Because we do

1 In analogy to the heliopause, the astropause is defined as the surface where
the pressure of the stellar wind balances the pressure of the interstellar
medium.
2 The wind base density is a free parameter of our model, which could be
constrained by more precise measurements of mass-loss rates of dM stars (cf.
Section 3). Our models assume a wind number density of n0 = 1011 cm−3.
In order to investigate how a different choice of n0 would affect our derived
mass and angular momentum-loss rates, we performed a simulation for one
of the cases studied (GJ 49) in which we adopted a different base density
(n0 = 1010 cm−3). We found a decrease in loss rates (a factor of 0.12 and
0.43 in mass- and angular momentum-loss rates, respectively) as compared
to values of the simulation where a larger density was adopted.

not know if the stars analysed here present a magnetic cycle, we do
not know if they will present a cyclic variation in J̇ , similar to the
solar case. For that, a long-term monitoring of these stars would be
required.

Table 2 shows the estimated age for some of the objects. Ages for
GJ 182 and CE Boo are more reliable, as the first one is part of the
β-Pic association (∼12 Myr, Torres et al. 2006) and the latter is a
member of the Pleiades open cluster (∼125 Myr, Stauffer, Schultz
& Kirkpatrick 1998). Observations suggest that at about the age
of 625Myr, main-sequence early-dM stars should have spun down
to a tight colour–period relation (Delorme et al. 2011). Using the
colour–period relation derived by Delorme et al. (2011), we obtain
age estimates for GJ 49 and DS Leo. The gyrochronology method
cannot be reliably applied for early-dM stars with P � 13 d, such
as DT Vir and OT Ser, as these objects may not have converged
towards the tight colour–period sequence. We note that, whenever
available, the estimated ages suggest that the objects in our sample
seem to be much younger than the Sun, a consequence of the faster
rotation of the former.

For the cases with age estimates, we see that the instantaneous
spin-down time-scales exceed the ages, suggesting that the stars
in our samples may not have had enough time to spin down. We
note that all the stars studied here are active ones, which are the
most accessible to ZDI studies. It is expected that, as the star spins
down, the efficiency in producing strong magnetic fields is reduced,
resulting in old objects that are less active and slowly rotating. The
time-scale for that to happen depends on the mass of the objects
(cf. Section 1).

4.2.3 Meridional structure of mass and angular momentum fluxes

Fig. 5 shows how mass- and angular momentum-loss rates vary
as a function of colatitude θ for the six stars studied in this pa-
per. To compute that, we integrate mass and angular momentum
fluxes along azimuth (ϕ). By doing that, we lose information on
the non-axisymmetric features of each of these fluxes. On the other
hand, these integrations allow us to investigate which colatitude
on average contributes more to angular momentum- and mass-loss
rates.

For the mass-loss rate (Fig. 5a, normalized to the maximum value
of dṀ/d cos θ for each object), most of the asymmetric variability

Figure 5. Meridional distribution of (a) mass- and (b) angular momentum-
loss rates calculated close to the outer edge of our grid (r 
 19R∗).
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seen in Fig. 4 is washed out, as seen by the almost ‘flat’ profiles
of mass flux versus θ . We find that there is no preferred colatitude
that contributes more to mass-loss, as the mass flux is maximum at
different colatitudes for different stars.

For the angular momentum flux (Fig. 5b), even after azimuthal
integration, there is still a significant contrast of a few orders of
magnitude between regions near the poles and the equator. At the
poles, the angular momentum flux goes to zero (because � → 0
in equation 8), while it is maximum in regions within ∼10◦ above
and below the equator (at θ = 78◦ for GJ 49 and at θ = 97◦ for
DS Leo). This indicates that the flow at equatorial regions carries
most of the stellar angular momentum. We also find that, at different
distances, the same characteristic of angular momentum flux as a
function of θ persists (J̇ is not redistributed over colatitudes). Note
however that the individual contributions (magnetic or kinetic, in
equation 9) to the angular momentum transport have their θ -profiles
altered at different distances, as one type of transport is converted
to the other. Note that the azimuthally integrated profiles shown in
Fig. 5(b) are qualitatively similar to the one obtained by Washimi &
Shibata (1993), who considered an axisymmetric dipolar magnetic
field distribution (see their fig. 3).

4.3 Dependences with observables

In this section, we provide relations between the output of our
simulations with observable quantities. Our goal is to provide a
fast method to estimate stellar wind quantities once observable
parameters become available. The results of our simulations were
plotted against observed quantities (and against themselves, as will
be presented in Section 4.4) and we then fitted power laws of the
type f(x) ∝ xp, where the dependent variable is f, the independent
variable is x, and p is the power-law index derived from the fitting
procedure (Fig. 6). The errors computed for p are associated with
the fit procedure only. Numerical errors or observable errors were
not considered in our fits. We note that the sample provided here
is small, containing only six early-dM stars, so that a statistical
analysis is out of reach. In addition, these stars present different
magnetic field properties, which in most of the cases results in poor
fits. A larger set of simulations should be carried out in order to
confirm the relations we found. The top portion of Table 3 presents
a few selected power-law fits.

The stellar wind flows along open magnetic field lines, so know-
ing the amount of unsigned open magnetic flux �open with respect to
the total observed surface flux �0 can be useful to predict wind prop-
erties, such as mass-loss rates and angular momentum-loss rates (cf.
Section 4.4). We find that the amount of open flux is approximately
linearly related to the observed unsigned large-scale surface flux
(�open ∝ �0.96±0.12

0 , Fig. 6a).
The mass-loss rate per surface area Ṁ/R2

∗ correlates with the
unsigned surface flux �0 to the power of 0.578 ± 0.087 a relatively
tight correlation (Fig. 6b). Although we do not find a tight corre-
lation between J̇ and �0 (p = 2.12 ± 0.52, Fig. 6c), there is an
impressive correlation between the braking time-scale τ and �0:
τ ∝ �

(−1.103±0.070)
0 (Fig. 6d). It is still early to argue that this corre-

lation will hold for other spectral types and only by doing a large
number of simulations we will be able to verify that. Never the less,
it is interesting to note that this correlation is qualitatively expected:
dynamo theories predict that fast rotators should present large sur-
face magnetic fluxes (e.g. Charbonneau 2013) and magnetic activ-
ity is indeed observed to be strong for fast rotators (Pizzolato et al.
2003). In addition, theories predict that fast rotators lose angular
momentum at faster rates than slow rotators (Weber & Davis 1967;

Figure 6. Dependence of a few selected wind-derived parameters with the
unsigned surface magnetic field �0. Solid lines are power-law fits of the
type f (�0) ∝ �

p
0 , where the dependent variable f is, from top to bottom,

�open, Ṁ/R2∗ , J̇ and τ , respectively. The power-law indexes p of the fits are
shown in the top portion of Table 3.
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Mestel 1984), therefore presenting shorter braking time-scales. As
the star slows down, the braking time-scale becomes increasingly
longer and its magnetic flux becomes smaller. Our results therefore
support this picture, i.e. dM-stars with large magnetic fluxes should
have shorter braking time-scales.

4.4 Dependences with wind parameters

Astrophysical outflows have long been studied (e.g. Parker 1958;
Weber & Davis 1967; Mestel 1968; Nerney & Suess 1975; Low &
Tsinganos 1986). Several works have provided a magnetic braking
formulation for computing angular momentum-loss rates of solar-
type stars (Washimi & Shibata 1993; Matt et al. 2012; Reiners &
Mohanty 2012), Kawaler (1988) being the currently most largely
used formalism. These works generally provide how J̇ depends on
Ṁ , R∗, M∗, Prot and on the strength of the radial/dipolar magnetic
field (usually also parametrized as a function of Prot). Due to our
small set of simulations and the largely non-homogenous magnetic
field topologies, it is not possible to isolate the individual depen-
dences of the stellar parameters on J̇ . To numerically achieve that, a
considerably large set of simulations would be required. In spite of
this limitation, we have presented how a few wind-derived proper-
ties (Ṁ , Ṁ/R2

∗ , J̇ , �open, τ ) are related to each other (lower portion
of Table 3, Figs 7 and 8), in a similar way as we did in Section 4.3.

The increase of Ṁ and J̇ with the unsigned open flux in slow ro-
tators is predicted in the spherically symmetric model developed by
Weber & Davis (1967), as Ṁ ∝ �open and J̇ ∝ �2

open (e.g. Mestel
1984). In their model, Weber & Davis (1967) assume a radial surface
magnetic field, which develops a relatively large azimuthal compo-
nent with distance, caused by stellar wind stresses. Our model, on
the other hand, incorporates realistic surface magnetic fields (de-
rived from observations) that, similarly, are stressed by the outflow-
ing stellar wind. From our model, we find that Ṁ ∝ �(0.89±0.19)

open and
J̇ ∝ �(1.96±0.68)

open (Figs 7a and b). Although the slopes for Ṁ(�open)
and J̇ (�open) are similar to the ones derived from the Weber–Davis
model, our results show rather large scatter, which we attribute to
two factors. The first cause of the large scatter is due to the wide
range of field topologies (i.e. deviations from the purely radial field
topology assumed in Weber–Davis model) and the second is due to

Table 3. Selected relations between the out-
put of our simulations with the observable
unsigned magnetic surface flux (top portion
of the table) and with wind-derived parame-
ters (bottom). The exponents of the relations
were derived from power-law fits. Numerical
errors or observable errors were not consid-
ered in our fits. Errors displayed below are
associated with the fit procedure only.

�open ∝ �0.96±0.12
0

Ṁ/R2∗ ∝ �0.577±0.087
0

J̇ ∝ �2.11±0.52
0

τ ∝ �−1.104±0.070
0

Ṁ ∝ �0.89±0.19
open

J̇ ∝ �1.96±0.68
open

Ṁ/R2∗ ∝ �0.601±0.052
open

J̇ ∝ Ṁ2.18±0.56

τ ∝ (Ṁ/R2∗)−1.70±0.36

Figure 7. Dependence of a few selected wind-derived parameters with the
unsigned open magnetic flux �open. Solid lines are power-law fits of the type
f (�opem) ∝ �

p
opem, where the dependent variable f is, from top to bottom,

Ṁ , J̇ and Ṁ/R2∗ . The power-law indexes p of the fits are shown in the
bottom portion of Table 3.

dependences of J̇ with multiple variables whose dependence could
not be isolated (e.g. the size of the Alfvén surface; cf. equation A7).

A tighter correlation is found between Ṁ/R2
∗ and �open (Fig. 7c),

with a power-law index of p = 0.601 ± 0.052. In addition, our
simulations suggest that J̇ and Ṁ are correlated, although the cor-
relation J̇ (Ṁ) presents a large scatter and its power-law index p has
a large fitting error (p = 2.18 ± 0.56, cf. Fig. 8a). This correlation is
an important point that must be considered in works that adopt for-
malisms of angular momentum-loss rates. For example, Kawaler
(1988) derived an analytical prescription for angular momentum
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M-dwarf stellar winds 1171

Figure 8. Dependence of a few selected wind-derived parameters. Top
panel shows how J̇ and Ṁ are related and bottom panel shows relation
between Ṁ/R2∗ and τ . Solid lines are power-law fits of the type f(x) ∝ xp.
The power-law indexes p of the fits are shown in the bottom portion of
Table 3.

losses, which, for a particular choice of magnetic field topology
(when the Alfvén radius is proportional to r3/2), J̇ becomes inde-
pendent of Ṁ . This relation, although incorrect, had been widely
used because it does not depend on the poorly constrained Ṁ for
cool, low-mass stars.

5 D ISC U SSION

5.1 Angular momentum losses under asymmetric
field geometries

The presence of non-axisymmetric fields provide extra magnetic
and thermal forces acting in the (asymmetric) Alfvén surface that
modify the loss of angular momentum (Mestel & Selley 1970, see
Appendix A). This is also verified in the simulations presented
in Vidotto et al. (2010a). They performed simulations of stellar
winds of young Suns with different alignments between the rotation
axis and the magnetic dipole axis. In those simulations, angular
momentum losses were enhanced by a factor of 2 as one goes from
the aligned case to the case where the dipole is tilted by 90◦ (i.e. as
non-axisymmetry is increased).

The six early-dM stars investigated in this work have similar
masses, radii and effective temperatures, but comprise two different
groups with different rotation periods. The slowest rotating stars
(GJ 49, DS Leo and CE Boo) have rotational periods of ∼15 d,
while the fastest rotating objects (DT Vir, OT Ser and GJ 182) have
periods of ∼3 d. Despite sharing similar characteristics, members of
each group present different surface magnetic field topologies and
intensities. For this reason, this sample is useful for investigating the
effects that different magnetic field characteristics play on stellar
winds.

We compare our results to what one would have obtained us-
ing a simplified, one-dimensional (1D) wind model. The 1D semi-
analytical solution is found by assuming (i) a star with a uniformly
distributed, purely radial magnetic field, whose intensity equals the
average observed radial field strength (〈Br〉 = �0(4πR2

∗)−1) and
(ii) a polytropic wind, with the same base density, temperature and
γ as those adopted in our 3D simulations (i.e. the hydrodynamical
quantities are as in the initial state of the simulation). Note that
the 1D wind solution we construct is exact for non-rotating stars
and we expect some deviations for slowly rotating stars (such as
the ones in our sample). From assumptions (i) and (ii), we are then
able to calculate the spherical radius (rA, 1D) of the Alfvén surface
of this simplified wind model and also its mass-loss rate (Ṁ1D). We
calculate the angular momentum-loss rates as in Weber & Davis
(1967)

J̇ 1D = 2

3
�∗r2

A,1DṀ1D. (11)

Table 2 shows how the angular momentum-loss rate J̇ 1D predicted
by a simplified 1D model compares to the value of J̇ derived
from our 3D simulations. We find that J̇ /J̇ 1D ranges from 0.15
to 0.5. One reason why the simplified 1D model overpredicts an-
gular momentum-loss rates is because assumption (i) implies that
all the surface magnetic field contributes to the wind in the 1D sim-
plified model, while in the 3D solution, only the open field lines
participate in the angular momentum removal.

To isolate the effects that different field topologies might have
on J̇ , it is interesting to compare stars with similar rotation rates
and observed surface magnetic fluxes �0. Comparison between GJ
49 and DS Leo shows that DS Leo has J̇ that is larger by factor of
2.5, and comparison between OT Ser and DT Vir, shows that DT
Vir presents J̇ that is a factor 1.3 larger. Our results demonstrate
that different field topologies indeed affects the amount of angular
momentum lost in the wind, as different magnetic field intensi-
ties and topologies contribute differently to extraction of angular
momentum.

5.2 Effects on rotational evolution

Although a factor of a few in J̇ seems to be a small difference,
if 3D effects (due to field topology) are not properly accounted in
rotational evolution models, this small deviation can lead to an er-
ror in predicting the rotation rates of dM stars. For example, if the
assumed angular momentum-loss rates are smaller than the ‘real’
ones, rotational evolution models end up predicting increasingly
larger rotation rates with time and therefore an excess of fast rota-
tors. It is difficult to quantify the error in the predicted rotation rates,
since J̇ is a complex function of many variables, but a rough esti-
mate is presented next. If we take an angular momentum-loss rate
that depends on the angular velocity to some power q (J̇ = −c�q

∗ ,
for a given coefficient c), one can show that, for large t, �∗ → [c(q −
1)t]1/( − q + 1), where we assumed that J ∝ M∗R2

∗�∗ and that M∗ and
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R∗ are roughly constants (e.g. low-mass stars in the main-sequence
phase). Therefore, a factor of 4 excess in the coefficient c predicts
rotation rates that are different by a factor of 41/(−q + 1). Note that
for q = 3, the Skumanich’s rotation–age relation (�∗ ∝ t−1/2) is
recovered and, in that case, overestimating the angular momentum-
loss rates by a factor of 4 predicts rotation rates that are small by a
factor of 2.

Recently, McQuillan et al. (2013) found that the slope of the upper
envelope of the period–mass distribution (which is defined by the
slowest rotating stars) changes sign at masses around 0.55 M� and
that for M∗ � 0.55 M� the period of the slowest rotators rises with
decreasing mass. Simplified analytical models derived by Reiners
& Mohanty (2012) are able to explain the slow rotation rates of dM
stars by assuming that the rotation rate at which activity saturation
occurs is much larger than the rotation rate at which higher mass
stars saturate (cf. Section 1). An alternative, or perhaps an addi-
tional, explanation for the rise in period of the upper envelope of
the period–mass relation found by McQuillan et al. (2013) could
also be explained by different magnetic field topologies.

5.3 Effects on planets

5.3.1 Galatic cosmic rays

Cosmic rays play important effects on the chemistry and ionization
of planetary atmospheres (Helling et al. 2013; Rimmer & Helling
2013). They could also be a source of genetic mutations in organisms
(Atri & Melott 2012). Therefore, the impact of cosmic ray flux on
exoplanets may have important implications for both atmospheric
characterization and habitability.

The flux of cosmic rays that impact the Earth is modulated over
the solar cycle. Wang, Sheeley & Rouillard (2006) found that the
non-axisymmetric component of the total open solar magnetic flux
is inversely correlated to the cosmic ray rate. By analogy, if the
non-axisymmetric component of the stellar magnetic field is able to
reduce the flux of cosmic rays reaching the planet, then we would
expect that planets orbiting stars with largely non-axisymmetric
fields would be more shielded from galactic cosmic rays, indepen-
dently of the planet’s own shielding mechanism (such as the ones
provided by a thick atmosphere or large magnetosphere).

From reconstructions of stellar magnetic fields using the ZDI
technique, it is possible to separate the axisymmetric part of the
surface field from the non-axisymmetric one (Donati et al. 2006a).
However, it is not obvious if the non-axisymmetric field should
maintain its surface characteristics at large distances. Here we cal-
culate the unsigned magnetic fluxes considering both the axi- and
non-axisymmetric components of the magnetic field from the results
of our simulations, following the approach of Wang et al. (2006).
Their approach considers a potential field extrapolation, where the
axisymmetric component of the magnetic field is obtained by av-
eraging the contribution of the spherical harmonics of the order of
m = 0 over longitude ϕ. Although the magnetic field derived in our
simulations is not potential, we adopt a similar approach and define
the axisymmetric component of the magnetic field as

Baxi
r (r, θ ) = 1

2π

∮
Br (r, θ, ϕ)dϕ. (12)

The corresponding unsigned axisymmetric magnetic flux is

�axi =
∮

|Baxi
r |dSsph =

∮
r2

(∣∣∣∣
∮

Brdϕ

∣∣∣∣
)

sin θdθ. (13)

In our computations, we take a sphere close to the outer edge of
our simulations (r ∼ 20R∗). We find that DT Vir, DS Leo and GJ 182
have the smallest ratio of �axi/�open (0.18, 0.52 and 0.65, respec-
tively). On the other hand, CE Boo, GJ 49 and OT Ser are very ax-
isymmetric and present the largest values of �axi/�open (0.95, 0.88
and 0.97, respectively). Although these flux ratios are not identical
to the axisymmetric-to-total magnetic energy ratios observationally
derived (Donati et al. 2008, cf. faxi in Table 1), the trend is similar to
the observed one. This means that the axisymmetric magnetic field
topologies that are observed can be used to characterize the degree
of axisymmetric field at large distances from the star. Therefore, if
cosmic ray shielding is more efficient in planets orbiting stars whose
magnetic fields are more non-axisymmetric, then planets orbiting
DT Vir, DS Leo and GJ 182 should be the most effectively shielded
planets from galactic cosmic rays. Detailed computations of the
propagation of cosmic rays such as those performed in Svensmark
(2006), Cohen, Drake & Kóta (2012), Cleeves, Adams & Bergin
(2013) should provide better constraints of the effectiveness of the
shielding of cosmic rays due to the non-axisymmetry of the host-star
magnetic fields.

5.3.2 Planetary magnetospheres

In Section 4.2.1, we showed that the mass flux profile is essentially
modulated by the local value of |Br| and that, at least within our
simulation domain, we find that the more non-axisymmetric topol-
ogy of the stellar magnetic field results in more asymmetric mass
fluxes distribution.

Likewise, we found that the stellar wind total pressure ptot (i.e.
the sum of thermal, magnetic and ram pressures) is also modulated
by |Br| and similarly, the more non-axisymmetric topology of the
stellar magnetic field produces more asymmetric distributions of
ptot. Fig. 9 shows the distribution of ptot for a sphere located at the
outer edge of our simulation domain (at r ∼ 19R∗), where we can
see that variations of up to a factor of 3 is obtained.

Considering a magnetized planet in orbit around a star, pressure
balance between the wind total pressure and the planet total pressure
requires that, at a the magnetopause distance rM from the planet,

ptot = B2
p,rM

8π
+ pp, (14)

where Bp,rM is the planetary magnetic field intensity at a distance
rM from the planet centre and pp is its thermal pressure. Along
their orbital paths, planets interact with the wind of their host stars.
By probing regions with different ptot, the magnetospheric sizes
of planets react accordingly, becoming smaller (larger) when the
external ptot is larger (smaller). Vidotto, Jardine & Helling (2011a)
investigated other effects that could cause variability in planetary
magnetospheric sizes.

Neglecting the thermal pressure of the planet and assuming
the planetary magnetic field is dipolar, we have that Bp,rM =
Bp,eq(Rp/rM)3, where Rp is the planetary radius and Bp,eq its surface
magnetic field at the equator. For a planetary dipolar axis aligned
with the rotation axis of the star, the magnetospheric size of the
planet is given by

rM

Rp
=

[
B2

p,eq

8πptot

]1/6

. (15)

For example, a factor of 3 difference in ptot along its orbit will cause
the planet magnetosphere to reduce/expand by 20 per cent.
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Figure 9. Distribution of the stellar wind total pressure ptot at a spherical surface of radius ∼19R∗ (close to the edge of our simulation domain). The more
asymmetric topology of the stellar magnetic field results in more asymmetric ptot. Because planetary magnetospheric sizes rM are set by pressure equilibrium
between the planet’s magnetic field and ptot, as the planet interacts with the wind of its host star along its orbital path, rM becomes smaller (larger) when the
external ptot is larger (smaller).

The angle between the shock normal and the tangent of a circular
orbit is defined as (Vidotto, Jardine & Helling 2010b)

θshock = arctan

(
ur

|uK − uϕ |
)

, (16)

where uK is the Keplerian velocity of the planet. Along its orbital
path, the planet probe regions of the wind with different velocities
(ur and uϕ in the equation above). Therefore, in addition to mag-
netospheric size variations, the orientation of the bow shock that
forms surrounding planetary magnetospheres also change along the
planetary orbit, as a consequence of asymmetric stellar magnetic
field distributions (see also Llama et al. 2013, for the specific case
of HD 189733b).

6 SU M M A RY A N D C O N C L U S I O N S

In this work, we investigated how the stellar winds of early-dM stars
respond to variations in their surface magnetic field characteristics.
We presented MHD numerical simulations of the wind of six dM
stars with spectral types M0 to M2.5, for which observationally
derived surface magnetic field maps exist (Donati et al. 2008). To
account for the observed three-dimensional (3D) nature of their
magnetic fields, 3D stellar wind models are required. Starting from
an initial potential magnetic field configuration and a thermally
driven wind, the system is evolved in time, resulting in a self-
consistent interaction of the wind particles and the magnetic field
lines. We note that all the simulations were performed with the
same grid resolution, boundary and initial conditions. They also
adopted the same coronal base density and temperature. Provided
that these quantities are similar for other stars, our results should
be extendable to other spectral types (e.g. to mid- and late-dM
stars). Masses, radii, rotation periods and surface magnetic field
distributions were adopted as shown in Table 1 and Fig. 1, following
the results published Donati et al. (2008). The summary of our
simulation results are found in Table 2.

Contrary to the results obtained on wind models with axisymmet-
ric magnetic fields, the Alfvén surfaces of the objects investigated
here have irregular, asymmetric shapes, which can only be captured
by fully 3D models. We found that the more non-axisymmetric
topology of the stellar magnetic field results in more asymmetric
mass fluxes. We also found that there is no preferred colatitude
that contributes more to mass-loss, as the mass flux is maximum at

different colatitudes for different stars. We note that latitudinal and
longitudinal variations in mass flux should also affect the distances
and shapes of astropauses, which would lack symmetry due to the
asymmetric nature of the stellar magnetic field.

We also computed the rate J̇ of angular momentum carried by
the stellar wind and found that it varies by more than two or-
ders of magnitude among our targets (Fig. 5b). The variations we
found in J̇ are related not only to differences in rotation peri-
ods, but also to changes in the topology and intensity of the mag-
netic fields. In spite of the diversity in the magnetic field topology,
we found that the stellar wind flow at equatorial regions carries
most of the stellar angular momentum for the stars studied in this
work. Our simulations suggested that the complexity of the mag-
netic field can play an important role in the angular momentum
evolution of the star, as different magnetic field intensities and
topologies contribute differently to extraction of stellar angular mo-
mentum. Different magnetic field topologies are therefore a plausi-
ble explanation for a large distribution of periods in field dM stars,
as has been found recently (Irwin et al. 2011; McQuillan et al.
2013).

The lack of symmetry in the topology of the stellar field can
also affect any orbiting planet. The flux of cosmic rays that impact
the Earth is modulated over the solar cycle. Wang et al. (2006)
found that the non-axisymmetric component of the total open so-
lar magnetic flux is inversely correlated to the cosmic ray rate.
Therefore, if cosmic ray shielding is more efficient in planets or-
biting stars whose magnetic fields are more non-axisymmetric,
then planets orbiting stars like DT Vir, DS Leo and GJ 182,
which have largely non-axisymmetric fields, should be the most
shielded planets from galactic cosmic rays, even if the planets
lack protective thick atmosphere or large magnetosphere of their
own.

The size of the magnetosphere rM of a planet (equation 15) is
set by pressure equilibrium between the planet’s magnetic field and
the stellar wind total pressure ptot (i.e. the sum of thermal, magnetic
and ram pressures). Similarly to the mass-flux, we found that ptot

is essentially modulated by the local value of |Br|, which presents
similar structures as the observed surface |Br|. Therefore, as the
planet interact with the wind of its host star along its orbital path,
it probes regions with different ptot. As a consequence, the mag-
netospheric sizes of planets react accordingly, becoming smaller
(larger) when the external ptot is larger (smaller). For example, a
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factor of 3 difference in ptot (typical of what was found in our
simulations) along its orbit will cause the planet magnetosphere to
reduce/expand by 20 per cent. In addition to magnetospheric size
variations, the orientation of the bow shock that forms surrounding
planetary magnetospheres also change along the planetary orbit, as
a consequence of asymmetric stellar magnetic field distributions.
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A P P E N D I X A : A N G U L A R M O M E N T U M
L OSSES IN STA RS WITH
NON-AXISYMMETRIC FIELD TO POLOGI ES

To evaluate the angular momentum-loss rate carried by the winds
simulated in this work, we compute the torque J̇ applied on the
star by the outflow of magnetized winds. In this Appendix, we
present a step-by-step derivation of the angular momentum-loss rate
considering a system that lacks symmetry. The derivation performed
next follows very closely the one presented in Mestel & Selley
(1970) and Mestel (1999).

The i-component of the torque density is given by li = (r × f )i ,
where f is the force per unit volume

f = −∇ · T (A1)

where in tensor form Tkl is given by (Mestel 1999)

Tkl =
(

B2

8π
+ P

)
δkl − BkBl

4π
+ ρVl(Vk + (�∗ × r)k) , (A2)

where V = u − �∗ × r is the velocity vector in the frame rotating
with angular velocity �∗ and u is the velocity in the inertial reference
frame. The outflow per unit area of the i-component of the angular
momentum across a volume V bounded by a closed surface S is

− J̇ i = −
∫

V

lidV =
∫

V

εijkxj

dTkl

dxl

dV

=
∫

V

d

dxl

(εijkxjTkl) dV

=
∮

S

εijkxjTklnldS, (A3)

where ni is the normal vector to the surface S, εijk the Levi–Civita
permutation symbol and xi is the coordinate vector. We used the
property that Tkl is symmetric from the first to the second line and the
divergence theorem from the second to the third line. The subscripts
‘1’, ‘2’ and ‘3’ denote, respectively, the x, y and z components of
a given vector/tensor. We focus only on the z-component of J̇ ,
as it is the one responsible for the star’s rotational braking (as �∗
points in the z-direction). Therefore, the z-component of the angular
momentum carried by the wind is

J̇ 3 =
∮

S

ε3jkxjTklnldS =
∮

S

(−x2T1l + x1T2l)nldS, (A4)

where we dropped the minus sign ahead of J̇ 3, but remind the reader
that it refers to the angular momentum that is lost. After rearranging
terms, we have

J̇ 3 =
∮ T1

S

(−x1B2 + x2B1)

(
B · n

4π

)
dS

+
∮ T2

S

(x1n2 − x2n1)

(
P + B2

8π

)
dS

+
∮ T3

S

�∗� 2ρ(V · n) dS

+
∮ T4

S

(x1V2 − x2V1)ρ(V · n) dS, (A5)

where � = (x2
1 + x2

2 )1/2 is the cylindrical radius and T1 to T4 denote
each of the four terms of this equation, which will be discussed
below. Equation (A5) is valid for any closed surface that encloses
the star. In particular, because B ‖ V , at the Alfvén surface SA,
B/V = √

4πρ and it can be shown that T1 = −T4. Thus, equation
(A5) simplifies to (Mestel 1999)

J̇ 3 =
∮

SA

[
(rA × nA)3

(
PA + B2

A

8π

)

+ ρA(V A · nA)�∗� 2
A

]
dSA, (A6)

where the index ‘A’ is used to remind us that the variable is com-
puted at the Alfvén surface. The second term in equation (A6) is
the effective corotation term, which is the only non-null term under
spherical symmetry. The first term is the moment about the centre of
the star of the thermal and magnetic pressures acting on the (asym-
metric) Alfvén surface. Note that the presence of non-axisymmetry
provides extra forces acting on the Alfvén surfaces that modify the
loss of angular momentum. It is straightforward to show that under
spherical symmetry, equation (A6) reduces to the known relation
derived by Weber & Davis (1967)

J̇ WD =
∮

SA

ρ(V · n)�∗� 2
AdSA = 2

3
Ṁr2

A�∗, (A7)

where rA is the radius of the spherical Alfvén surface. We stress here
that previous equation is only valid for systems with axial symmetry
and equations (A6) or (A8) below should be used in asymmetric
field configurations.

Because our integration is done numerically and the Alfvén sur-
face in our simulations are usually quite irregular (due to the asym-
metric nature of the magnetic field distribution, cf. Fig. 2), to reduce
numerical errors in our computation, we integrate J̇ 3 over spherical
surfaces at different distances from the star. In this case, the term
T2 in equation (A5) is null (x1n2 − x2n1 ≡ (r × n)3 = 0) and we
are left with a contribution from the magnetic torque (term T1) and
a contribution from the angular momentum of the material (terms
T3 + T4). Rearranging terms, we have

J̇ 3 =
∮

Ssph

[
(−x1B2 + x2B1)

(
B · n

4π

)

+ (�∗� 2 + xV2 − x2V1)ρ(V · n)
]

dSsph

=
∮

Ssph

[
−�BϕBr

4π
+ �uϕρur

]
dSsph, (A8)

where in the last equality we used spherical coordinates at the
inertial reference frame.

Equations (A6) and (A8) are mathematically equivalent. Because
the former one requires the computation of the normal vectors to the
highly irregular Alfvén surfaces, equation (A8) is computationally
more efficient in systems that lack symmetry.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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