617 research outputs found

    The Burden of Knowing: Camus, Qohelet, and the Limitations of Human Reason

    Get PDF
    In one of the most influential works of the twentieth century, The Myth of Sisyphus, Albert Camus writes this: “This heart within me I can feel, and I judge that it exists. This world I can touch, and I likewise judge that it exists. There ends all my knowledge, and the rest is construction.” Here, Camus addresses what he believes to be one of the main sources of the absurd: the limitations of human reason. He claims that his inability to fully understand human reality creates a gap between his existence and its meaning, and, in effect, renders the whole of human experience as absurd. Because Camus makes these conclusions from a purely atheistic position, it would seem that his notion of the absurd is incompatible with a theistic understanding of the human condition. Interestingly, however, the main speaker of the ancient Hebrew wisdom book Ecclesiastes, Qohelet, also concludes that the limits of human knowledge give life a sense of absurdity. Although Camus (an atheist) and Qohelet (a theist) begin with different assumptions regarding the existence of God—the very Being who gives meaning and clarity to his creation—their similar conclusions reveal an unlikely compatibility between atheistic and theistic attitudes towards the human predicament. While Camus and Qohelet recognize that the world cannot be explained by human reasoning, and is therefore absurd, they each conclude that uncertainty and human limitations may prompt a certain liberation and solace that allows them to move beyond the absurd. This curious parallel between Camus’s modern existential attitudes in The Myth of Sisyphus and the ancient Hebraic wisdom of Ecclesiastes show that the awareness of the limitation of human reason may compel man to live authentically and passionately despite the seeming unreasonableness of his life

    Public understanding of cigarette smoke constituents: three US surveys

    Get PDF
    The Tobacco Control Act requires public disclosure of information about toxic constituents in cigarette smoke. To inform these efforts, we studied public understanding of cigarette smoke constituents

    Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis

    Get PDF
    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Long-term ecological research on Colorado Shortgrass Steppe

    Get PDF
    The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Poster presented at the LTER All Scientists Meeting held in Estes Park, CO on September 10-13, 2012

    Developmental exposures to common environmental contaminants, DEHP and lead, alter adult brain and blood hydroxymethylation in mice

    Get PDF
    Introduction: The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects.Methods: To investigate the relationship between DNA hydroxymethylation and developmental exposure to common contaminants, a collaborative, NIEHS-sponsored consortium, TaRGET II, initiated longitudinal mouse studies of developmental exposure to human-relevant levels of the phthalate plasticizer di(2-ethylhexyl) phthalate (DEHP), and the metal lead (Pb). Exposures to 25 mg DEHP/kg of food (approximately 5 mg DEHP/kg body weight) or 32 ppm Pb-acetate in drinking water were administered to nulliparous adult female mice. Exposure began 2 weeks before breeding and continued throughout pregnancy and lactation, until offspring were 21 days old. At 5 months, perinatally exposed offspring blood and cortex tissue were collected, for a total of 25 male mice and 17 female mice (n = 5–7 per tissue and exposure). DNA was extracted and hydroxymethylation was measured using hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). Differential peak and pathway analysis was conducted comparing across exposure groups, tissue types, and animal sex, using an FDR cutoff of 0.15.Results: DEHP-exposed females had two genomic regions with lower hydroxymethylation in blood and no differences in cortex hydroxymethylation. For DEHP-exposed males, ten regions in blood (six higher and four lower) and 246 regions (242 higher and four lower) and four pathways in cortex were identified. Pb-exposed females had no statistically significant differences in blood or cortex hydroxymethylation compared to controls. Pb-exposed males, however, had 385 regions (all higher) and six pathways altered in cortex, but no differential hydroxymethylation was identified in blood.Discussion: Overall, perinatal exposure to human-relevant levels of two common toxicants showed differences in adult DNA hydroxymethylation that was specific to sex, exposure type, and tissue, but male cortex was most susceptible to hydroxymethylation differences by exposure. Future assessments should focus on understanding if these findings indicate potential biomarkers of exposure or are related to functional long-term health effects

    A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making

    Get PDF
    West Nile virus(WNV) is a globally distributed mosquito-borne virus of great public health concern. The number of WNV human cases and mosquito infection patterns vary in space and time. Many statistical models have been developed to understand and predict WNV geographic and temporal dynamics. However, these modeling efforts have been disjointed with little model comparison and inconsistent validation. In this paper, we describe a framework to unify and standardize WNV modeling efforts nationwide. WNV risk, detection, or warning models for this review were solicited from active research groups working in different regions of the United States. A total of 13 models were selected and described. The spatial and temporal scales of each model were compared to guide the timing and the locations for mosquito and virus surveillance, to support mosquito vector control decisions, and to assist in conducting public health outreach campaigns at multiple scales of decision-making. Our overarching goal is to bridge the existing gap between model development, which is usually conducted as an academic exercise, and practical model applications, which occur at state, tribal, local, or territorial public health and mosquito control agency levels. The proposed model assessment and comparison framework helps clarify the value of individual models for decision-making and identifies the appropriate temporal and spatial scope of each model. This qualitative evaluation clearly identifies gaps in linking models to applied decisions and sets the stage for a quantitative comparison of models. Specifically, whereas many coarse-grained models (county resolution or greater) have been developed, the greatest need is for fine-grained, short-term planning models (m–km, days–weeks) that remain scarce. We further recommend quantifying the value of information for each decision to identify decisions that would benefit most from model input

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Study of redshifted H I from the epoch of reionization with drift scan

    Get PDF
    The detection of the Epoch of Reionization (EoR) in the redshifted 21-cm line is a challenging task. Here we formulate the detection of the EoR signal using the drift scan strategy. This method potentially has better instrumental stability as compared to the case where a single patch of sky is tracked. We demonstrate that the correlation time between measured visibilities could extend up to 1-2 hr for an interferometer array such as the Murchison Widefield Array (MWA), which has a wide primary beam. We estimate the EoR power based on cross-correlation of visibilities across time and show that the drift scan strategy is capable of the detection of the EoR signal with comparable/better signal-to-noise as compared to the tracking case. We also estimate the visibility correlation for a set of bright point sources and argue that the statistical inhomogeneity of bright point sources might allow their separation from the EoR signal
    corecore