130 research outputs found

    An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas

    Get PDF
    This study focuses on the application of the concept of circular economy, with the creation of added-value marketable products and energy from organic waste while minimizing environmental impacts. Within this purpose, an urban biorefinery technology chain has been developed at pilot scale in the territorial context of the Treviso municipality (northeast Italy) for the production of biopolymers (polyhydroxyalkanoates, PHAs) and biogas from waste of urban origin. The piloting system (100\u2013380 L) comprised the following units: a) acidogenic fermentation of the organic fraction of municipal solid waste (OFMSW) and biological sludge; b) two solid/liquid separation steps consisting of a coaxial centrifuge and a tubular membrane (0.2 \u3bcm porosity); c) a Sequencing Batch Reactor (SBR) for aerobic PHA-storing biomass production; d) aerobic fed-batch PHA accumulation reactor and e) Anaerobic co-digestion (ACoD). The thermal pre-treatment (72 \ub0C, 48 h) of the feedstock enhanced the solubilization of the organic matter, which was converted into volatile fatty acids (VFAs) in batch mode under mesophilic fermentation conditions (37 \ub0C). The VFA content increased up to 30 \ub1 3 g COD/L (overall yield 0.65 \ub1 0.04 g CODVFA/g VS(0)), with high CODVFA/CODSOL (0.86 \ub1 0.05). The high CODVFA/CODSOL ratio enhanced the PHA-storing biomass selection in the SBR by limiting the growth of the non-storing microbial population. Under fully aerobic feast-famine regime, the selection reactor was continuously operated for 6 months at an average organic loading rate (OLR) of 4.4 \ub1 0.6 g COD/L d and hydraulic retention time (HRT) of 1 day (equal to SRT). The ACoD process (HRT 15 days, OLR 3.0\u20133.5 kg VS/m3 d) allowed to recover the residual solid-rich overflows generated by the two solid/liquid separation units with the production of biogas (SGP 0.44\u20130.51 m3/kg VS) and digestate. An overall yield of 7.6% wt PHA/VS(0) has been estimated from the mass balance. In addition, a preliminary insight into potential social acceptance and barriers regarding organic waste-derived products was obtained

    Effect on the conformation of a terminally blocked, (E) Ăź,y-unsaturated o-amino acid residue induced by carbon methylation

    Get PDF
    Peptides are well-known to play a fundamental therapeutic role and to represent building blocks for numerous useful biomaterials. Stabilizing their active 3D-structure by appropriate modifications remains, however, a challenge. In this study, we have expanded the available literature information on the conformational propensities of a promising backbone change of a terminally blocked d-amino acid residue, a dipeptide mimic, by replacing its central amide moiety with an (E) Cß-C¿ alkene unit. Specifically, we have examined by DFT calculations, X-ray diffraction in the crystalline state, and FT-IR absorption/NMR spectroscopies in solution the extended vs folded preferences of analogues of this prototype system either unmodified or possessing single or multiple methyl group substituents on each of its four -CH2-CH-CH-CH2– main-chain carbon atoms. The theoretical and experimental results obtained clearly point to the conclusion that increasing the number of adequately positioned methylations will enhance the preference of the original sequence to fold, thus opening interesting perspectives in the design of conformationally constrained peptidomimetics.Postprint (author's final draft

    Helical foldamers incorporating photoswitchable residues for light-mediated modulation of conformational preference

    Get PDF
    An E unsaturated fumaramide linkage may be introduced into Aib peptide foldamer structures by standard coupling methods and photoisomerized to its Z (maleamide) isomer by irradiation with UV light. As a result of the photoisomerization, a new hydrogen-bonded contact becomes possible between the peptide domains located on either side of the unsaturated linkage. Using the fumaramide/maleamide linker to couple a chiral and an achiral fragment allows the change in hydrogen bond network to communicate a conformational preference, inducing a screw sense preference in the achiral domain of the maleamide-linked foldamers that is absent from the fumaramides. Evidence for the induced screw sense preference is provided by NMR and CD, and also by the turning on by light of the diastereoselectivity of a peptide chain extension reaction. The fumaramide/maleamide linker thus acts as a "conformational photo diode" that conducts stereochemical information as a result of irradiation by UV ligh

    A COMPASS for VESPUCCI: a FAIR way to explore the grapevine transcriptomic landscape

    Get PDF
    7openInternational coauthor/editoropenMoretto, M.; Sonego, P.; Pilati, S.; Matus, J.T.; Costantini, L.; Malacarne, G.; Engelen, K.Moretto, M.; Sonego, P.; Pilati, S.; Matus, J.T.; Costantini, L.; Malacarne, G.; Engelen, K

    Redesigning an Electrochemical MIP Sensor for PFOS: Practicalities and Pitfalls

    Get PDF
    There is a growing interest in the technological transfer of highly performing electrochemical sensors within portable analytical devices for the in situ monitoring of environmental contaminants, such as perfluorooctanesulfonic acid (PFOS). In the redesign of biomimetic sensors, many parameters should be taken into account from the working conditions to the electrode surface roughness. A complete characterization of the surface modifiers can help to avoid time-consuming optimizations and better interpret the sensor responses. In the present study, a molecularly imprinted polymer electrochemical sensor (MIP) for PFOS optimized on gold disk electrodes was redesigned on commercial gold screen-printed electrodes. However, its performance investigated by dierential pulse voltammetry was found to be poor. Before proceeding with further optimization, a morphological study of the bare and modified electrode surfaces was carried out by scanning electron microscopy–energy-dispersive X-ray spectrometry (SEM–EDS), atomic force microscopy (AFM) and profilometry revealing an heterogeneous distribution of the polymer strongly influenced by the electrode roughness. The high content of fluorine of the target-template molecule allowed to map the distribution of the molecularly imprinted polymer before the template removal and to define a characterization protocol. This case study shows the importance of a multi-analytical characterization approach and identify significant parameters to be considered in similar redesigning studies

    Chemical analysis and computed tomography of metallic inclusions in Roman glass to unveil ancient coloring methods

    Get PDF
    This paper describes the analysis of two near-spherical metallic inclusions partially incorporated within two Roman raw glass slags in order to elucidate the process that induced their formation and to determine whether their presence was related to ancient glass colouring processes. The theory of metallic scraps or powder being used in Roman times for glass-making and colouring purposes is widely accepted by the archaeological scientific community, although the assumption has been mainly based on oral traditions and documented medieval practices of glass processing. The analysis of the two inclusions, carried out by X-ray computed tomography, electrochemical analyses, and scanning electron microscopy, revealed their material composition, corrosion and internal structure. Results indicate that the two metallic bodies originated when, during the melting phase of glass, metal scraps were added to colour the material: the colloidal metal–glass system reached then a supersaturation condition and the latter ultimately induced metal expulsion and agglomeration. According to the authors’ knowledge, these two inclusions represent the first documented and studied finds directly associated with the ancient practise of adding metallic agents to colour glass, and their analysis provides clear insights into the use of metallic waste in the glass colouring process.This paper describes the analysis of two near-spherical metallic inclusions partially incorporated within two Roman raw glass slags in order to elucidate the process that induced their formation and to determine whether their presence was related to ancient glass colouring processes. The theory of metallic scraps or powder being used in Roman times for glass-making and colouring purposes is widely accepted by the archaeological scientific community, although the assumption has been mainly based on oral traditions and documented medieval practices of glass processing. The analysis of the two inclusions, carried out by X-ray computed tomography, electrochemical analyses, and scanning electron microscopy, revealed their material composition, corrosion and internal structure. Results indicate that the two metallic bodies originated when, during the melting phase of glass, metal scraps were added to colour the material: the colloidal metal-glass system reached then a supersaturation condition and the latter ultimately induced metal expulsion and agglomeration. According to the authors' knowledge, these two inclusions represent the first documented and studied finds directly associated with the ancient practise of adding metallic agents to colour glass, and their analysis provides clear insights into the use of metallic waste in the glass colouring process

    Covalent immobilization of delipidated human serum albumin on poly(pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid

    Get PDF
    The immobilization of biomolecules at screen printed electrodes for biosensing applications is still an open challenge. To enrich the toolbox of bioelectrochemists, graphite screen printed electrodes (G-SPE) were modified with an electropolymerized film of pyrrole-2-carboxilic acid (Py-2-COOH), a pyrrole derivative rich in carboxylic acid functional groups. These functionalities are suitable for the covalent immobilization of biomolecular recognition layers. The electropolymerization was first optimized to obtain stable and conductive polymeric films, comparing two different electrolytes: sodium dodecyl sulphate (SDS) and sodium perchlorate. The G-SPE modified with Py-2-COOH in 0.1 M SDS solution showed the required properties and were further tested. A proof-of-concept study for the development of an impedimetric sensor for perfluorooctanoic acid (PFOA) was carried out using the delipidated human serum albumin (hSA) as bioreceptor. The data interpretation was supported by size exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) analysis of the bioreceptor-target complex and the preliminary results suggest the possibility to further develop this biosensing strategy for toxicological and analytical studies

    Nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance

    Get PDF
    The determination of per- and polyfluoroalkyl substances (PFAS) in environmental samples, such as drinking waters, requires the design of high performing and versatile sensing strategies. Label-free biosensing platforms based on specialty fiber optics are a valid option to face this challenge. Among them, lossy mode resonance (LMR) fiber optic biosensors are showing remarkable performance in terms of detection limit, selectivity, and reproducibility. The detection of small molecules, such as perfluorooctanoic acid (PFOA), can be achieved with the help of well-designed biological recognition layers. In this study, the biosensing potentialities of a label-free LMR-assisted optical platform based on nanocoated fibers are investigated. Delipidated human serum albumin (hSA) was used as biological recognition layer for PFOA in aqueous solution. Different fiber functionalization protocols based on the covalent immobilization of hSA were tested. The conformational changes related to the formation of hSA/PFOA complex were followed via optical monitoring of LMR spectral shift, showing a trend that can be modeled with Langmuir adsorption isotherm. These results confirmed the potentiality of LMR-based fiber biosensors for the detection of small molecules, such as PFOA, in synthetic samples

    Insights into the secondary glass production in Roman Aquileia: A preliminary study

    Get PDF
    A set of 29 glass shards, selected from numerous ones recovered in 2017 in Aquileia (NE Italy), was studied to provide evidence of local glass production for that specific area in antiquity. These shards can be dated between the 1st and the 4th century AD. The chemical composition of glass samples was obtained using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) that enables to quantify the concentration of major, minor, and trace elements needed to investigate provenance and compositional groups and sometimes to suggest a chronological frame of the samples. To ensure that the samples are homogeneous enough to perform accurate quantification, some of them were also analysed by instrumental neutron activation analysis (INAA). Most of the chunks, working wastes, and artefact shards considered in this work exhibited similarities among them in terms of composition, which likely indicates that glass working activities were practised at the site of recovery. The analyses demonstrated the presence of both recycled glass and primary glass. Interestingly, the compositional data of raw primary glass point to both Syro-Palestinian and Egyptian regions as sourcing areas, confirming the role of the Roman city of Aquileia as a network node for the trade of goods. In addition, some particularly coloured glass fragments showed a composition typical of glass produced starting from the 1st or 2nd century AD, requiring specific types of furnaces and procedures for its manufacture, and suggesting the possibility of local highly-specialised production. The preliminary results of this work strengthen the hypothesis that Aquileia was a thriving centre, either for working primary glass or for glass recycling and production of objects with particular colours

    Grapevine DMR6-1 Is a candidate gene for susceptibility to Downy mildew

    Get PDF
    Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approac
    • …
    corecore