

Università degli Studi di Padova

Università degli Studi di Padova

Padua Research Archive - Institutional Repository

Helical foldamers incorporating photoswitchable residues for light-mediated modulation of conformational preference

Original Citation:

Availability: This version is available at: 11577/3200148 since: 2016-10-20T10:30:45Z

Publisher: American Chemical Society

Published version: DOI: 10.1021/jacs.6b04435

Terms of use: Open Access

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at http://www.unipd.it/download/file/fid/55401 (Italian only)

(Article begins on next page)

SUPPORTING INFORMATION

Helical foldamers incorporating photoswitchable residues for light-mediated modulation of conformational preference

Daniela Mazzier,^{*a*} Marco Crisma,^{*b*} Matteo De Poli,^{*c*} Giulia Marafon, ^{*a*} Cristina Peggion,^{*a*} Jonathan Clayden,^{**d*} Alessandro Moretto^{**a,b*}

^aDepartment of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy

^bInstitute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131 Padova, Italy

^cSchool of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

^dSchool of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom

Table of Contents

Fig. S1-S3 Part of NOESY spectra of peptides 2a and 3a	pp. S3-S4
Fig. S4 Model of peptide 2a	S5
Fig. S5-S6 ¹ H NMR spectra of peptides 2a and 2b before and after irradiation	S6
Fig. S7 ¹ H NMR spectra of 2c/3c before and after irradiation	S 7
Fig. S8 UV-Vis absorption spectra of 2c/3c	S 8
Fig. S9 CD spectra of 2f before and after irradiation	S 8
Fig. S10-S11 Part of NOESY spectra of peptides 2c/3c and 2d/3d	S9
Fig. S12 Part of NOESY spectra of peptides 2d/3d	S10
General Methods	S11
X-Ray diffraction	S12
Synthesis and characterization of compounds	S21
NMR spectra	S35
Supporting References	S58

Figure S1. β CH₃ $\rightarrow \alpha$ NH region of the NOESY spectra (500 MHz, CD₃CN) of peptides 2a (A) and 3a (B). Sequential ($i \rightarrow i+1$) and medium-range ($i \rightarrow i+2$), diagnostic of the presence of a 3₁₀-helical structure are visible in both spectra.

Figure S2. Amide region of the NOESY spectrum (500 MHz, CD₃CN) of **2a**. Sequential $\alpha NH(i) \rightarrow \alpha NH(i+1)$ are assigned in the spectrum.

Figure S3. Amide region of the NOESY spectrum (500 MHz, CD₃CN) of **3a**. Sequential $\alpha NH(i) \rightarrow \alpha NH(i+1)$ are assigned in the spectrum.

Figure S4. Model of 2a with the -(Aib)₄- helical segment in the left-handed screw sense.

Figure S5. ¹H NMR spectra (500 MHz in CD₃OD) of **2a** before irradiation (blue line) and after irradiation at 254 nm for different times (30 min, green line and 1h, red line).

Figure S6. ¹H NMR spectra (500 MHz in CD₃OD) of **2b** before irradiation (blue line) and after irradiation at 254 nm for different times (30 min, green line and 1h, red line) (**A**). Details of the ¹H NMR spectra showing the glycinamide signals (**B**) and the olefininic protons (**C**).

Figure S7. (A) ¹H NMR spectra (500 MHz in CD₃CN) of **2c** before irradiation (blue line) and after irradiation at 254 nm for 2h. (B) ¹H NMR spectra (500 MHz in CDCl₃) of **3c** before irradiation (blue line) and after irradiation at 312 nm for 2h.

Figure S8. UV-Vis absorption spectra of 2c (blue line) and 3c (red line) in MeOH solution.

Figure S9. CD spectra of **2f** in MeOH before irradiation (blue line) and after irradiation (red line) at 254 nm (0.2 mM).

Figure S10. β CH₃ $\rightarrow \alpha$ NH region of the NOESY spectra (400 MHz, CD₃CN) of peptides 2c (A) and 3c (B).

Figure S11. β CH₃ $\rightarrow \alpha$ NH region of the NOESY spectra (400 MHz, CD₃CN) of peptides 2d (A) and 3d (B).

Figure S12. β CH₃ $\rightarrow \alpha$ NH region of the NOESY spectra (400 MHz, CD₃CN) of peptides 2e (A) and 3e (B). NH \rightarrow NH region of the NOESY spectra (400 MHz, CD₃CN) of peptides 2e (C) and 3e (D,E).

General Methods

High-Performance Liquid Chromatography. The HPLC measurements were performed using an Agilent 1200 apparatus (Palo Alto, CA), equipped with a UV detector at 226 nm and a column Agilent Extend- C_{18} (stationary phase). Eluants: A= 9:1 H₂O/CH₃CN, 0.05 % TFA; B= 1:9 H₂O/CH₃CN, 0.05 % TFA.

Nuclear Magnetic Resonance. ¹H NMR and 2D-NMR spectra (DQF-COSY, TOCSY and NOESY experiments) were recorded at 25, 45 and 65 °C on a Bruker Avance 400, 500 or 600 MHz instruments. ¹H and ¹³C spectra were referenced relative to the solvent residual peaks and chemical shifts (δ) reported in ppm downfield of tetramethylsilane (CDCl₃ δ H: 7.26 ppm, δ C: 77.16 ppm; CD₃OD δ H: 3.31 ppm, δ C 49.05 ppm, CD₃CN δ H: 1.94 ppm, δ C: 118.26 ppm). The multiplicity of a signal is indicated as br, broad; s, singlet; d, doublet; t, triplet; m, multiplet. Where ¹H NMR spectra were run in MeOD exchangeable protons (NH, OH) are reported only where observed.

Mass Spectrometry. High-resolution (HR) mass spectra by electrospray ionization (ESI), collected in the positive mode, were performed on two different instruments:

i) Perseptive Biosystem Mariner ESI-ToF5220 spectrometer (Foster City, CA);

ii) Thermo Finnigan MAT95XP (data were recorded by staff at the University of Manchester and are accurate to ± 0.001 Da).

Circular Dichroism. CD measurements were carried using a Jasco J-715 spectropolarimeter at different temperatures (20, 40 and 60°C) and a thermostatic system to control the temperature of the sample. Fused quartz cells of 0.2-mm and 1-mm path length (Hellma, Müllheim, Germany) were used. The value are expressed in terms of $[\theta]_T$, the total molar ellipticity (deg x cm² x dmol⁻¹).

Fourier Transform-Infrared Spectroscopy. FT-IR absorption spectra were recorded with a ATi Perkin Elmer Spectrum RX1 FT-IR spectrometer. The \bar{v} maxima for the main absorption bands are given.

Melting point. Mps were determined on a GallenKamp apparatus and are uncorrected.

UV lamp. A handheld UV Lamp (mineralight lamp, Model UVG-54) with wavelength of 254 nm (6W) was used in the photoisomerization experiments.

UV-Vis Absorption. The UV-Vis absorption spectra were recorded using a Shimadzu model UV-2501 PC spectrophotometer. A 1-cm path length quartz cell was used.

Photoisomerization experiments

The sample was dissolved in deuterated solvent (CD₃CN) and placed in a quartz NMR tube (Norrell S-500-QTZ). The sealed NMR tube was directly irradiated under the UV lamp without protective filter at a distance of about 4 cm from the light bulb. The NMR spectra were recorded before and after different irradiation times. Typically, 1-2 h of irradiation were sufficient to achieve *E* to *Z* conversion in 80-95% yield (without decomposition according to NMR and HPLC analyses). Formation of byproducts (< 5%) was detected by NMR only after long irradiation times (>18 h).

Diastereoselection experiments

Reactions of 5(4H) oxazolones with H-D,L-Val-OMe were performed in CH₃CN or CH₂Cl₂ at controlled temperature using a thermostatic oil bath (20, 35, 45 and 70 °C).

The carboxylic acid (**10a-b** or **11a-b**) (0.05 mmol) was suspended in 5 mL of the appropriate solvent and EDC·HCl (0.06 mmol) was added, and the solution stirred for 10 min at r.t. The quantitative formation of the oxazolone (**12a-b** or **13a-b**) was controlled by HPLC.

Separately H-D,L-Val-OMe·HCl (0.31 mmol) and DIPEA (0.31 mmol) were suspended in 1 mL of the appropriate solvent.

In a typical experiment, the oxazolone solution (500 μ L, 1 equiv.) and the racemate solution (125 μ L, 8 equiv.) were mixed and the resulting solution was maintained under stirring in a thermostatic oil bath. The reaction was monitored by HPLC, by following the disappearance of the oxazolone accompanied by the formation of the two diastereomeric products. The formation of the two resulting peptides **15a-d** (*Z* isomer) can be quantified directly by HPLC. Whereas in the case of **14a-d** (*E* isomer), after the disappearance of the oxazolone reactant, the product mixture was irradiated at 254 nm and successively analyzed by HPLC. The independent preparation of each diastereomer was performed by reaction of the oxazolone with either D or L H-Val-OMe.

X-Ray diffraction

Crystals of **2a** and **3c** were grown by slow evaporation from CH₃CN and MeOH solutions, respectively. X-Ray diffraction data were collected with a Gemini E four-circle kappa diffractometer (Agilent Technologies) equipped with a 92 mm EOS CCD detector, using graphite monochromated Cu K α radiation ($\lambda = 1.54178$ Å). Data collection and reduction were performed with the CrysAlisPro software (version 1.171.36.28, Agilent Technologies). A semi-empirical absorption correction based on the multi-scan technique using spherical harmonics, implemented in the SCALE3 ABSPACK scaling algorithm, was applied. For **3c**, diffraction data were collected up

to theta = 51.48° , as the crystal did not diffract significantly beyond 1.0 Å resolution, in all probability as a result of the combination of the small crystal size (minimum dimension 0.05 mm) with the relatively large asymmetric unit (five independent molecules, shown in Figure S13, for a total of 135 non-H atoms).

Both structures were solved by ab initio procedures of the SIR 2014 program,¹ and refined by fullmatrix least-squares on F^2 , using all data, by application of the SHELXL-2014 program,² with anisotropic displacement parameters for all of the non-H atoms. H-Atoms were calculated at idealized positions and refined using a riding model. In the refinement of **3c**, restraints were applied to the anisotropic displacement parameters of the non-H atoms (RIGU command in SHELX-2014). Relevant crystal data and structure refinement parameters, selected torsion angles, and intra-and intermolecular H-bond parameters are listed in Tables S1-S3 for **2a**, and in Tables S4-S6 for **3c**.

CCDC 1473792-1473793 contain the supplementary crystallographic data for this paper. These data can be obtained from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S13. Perspective view of the five independent molecules (A-E) composing the asymmetric unit in the X-ray diffraction structure of 3c. In each molecule, the intramolecular H-bond between the L-(α Me)Val N-H and the maleamide carbonyl oxygen next to the Aib residue is represented by a dashed line.

Table S1.	. Crystal	data	and	structure	refinement	for	2a.
-----------	-----------	------	-----	-----------	------------	-----	-----

Identification code	mc262b		
Empirical formula	$C_{32}H_{55}N_7O_9$		
Formula weight	681.83		
Temperature	293(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	P 2 ₁ 2 ₁ 2 ₁		
Unit cell dimensions	a = 9.01420(14) Å	α= 90°.	
	b = 10.94112(14) Å	β= 90°.	
	c = 38.4416(6) Å	$\gamma = 90^{\circ}.$	
Volume	3791.32(10) Å ³		
Z	4		
Density (calculated)	1.195 Mg/m ³		
Absorption coefficient	0.724 mm ⁻¹		
F(000)	1472		
Crystal size	$0.25 \times 0.20 \times 0.05 \text{ mm}^3$		
Theta range for data collection	2.299 to 70.959°.		
Index ranges	$-11 \le h \le 10, -13 \le k \le 12, -47 \le l \le 41$		
Reflections collected	33257		
Independent reflections	7272 [R(int) = 0.0326]		
Completeness to theta = 67.679°	100.0 %		
Absorption correction	Semi-empirical from equivaler	its	
Max. and min. transmission	1.00000 and 0.22453		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7272 / 0 / 433		
Goodness-of-fit on F ²	1.031		
Final R indices [I>2sigma(I)]	$R_1 = 0.0406, wR_2 = 0.1098$		
R indices (all data)	$R_1 = 0.0438, wR_2 = 0.1126$		
Absolute structure parameter	0.01(6)		
Largest diff. peak and hole	0.269 and -0.225 e.Å ⁻³		

C1F-N6-C6A-C6	-58.4(3)
N6-C6A-C6B1-C6G1	174.5(2)
N6-C6A-C6B1-C6G2	-61.3(3)
CT1-OT-C6-C6A	178.9(2)
N6-C6A-C6-OT	-47.9(3)
C6A-N6-C1F-C2F	-171.0(2)
N6-C1F-C2F-C3F	159.6(3)
C1F-C2F-C3F-C4F	-174.6(3)
C2F-C3F-C4F-N1	169.1(3)
C3F-C4F-N1-C1A	-176.2(2)
C4F-N1-C1A-C1	-54.3(3)
N1-C1A-C1-N2	-31.4(3)
C1A-C1-N2-C2A	-172.9(2)
C1-N2-C2A-C2	-48.6(3)
N2-C2A-C2-N3	-33.5(3)
C2A-C2-N3-C3A	-176.9(2)
C2-N3-C3A-C3	-51.1(3)
N3-C3A-C3-N4	-40.4(3)
C3A-C3-N4-C4A	-172.8(2)
C3-N4-C4A-C4	-66.1(3)
N4-C4A-C4-N5	-23.3(3)
C4A-C4-N5-C5A	178.2(2)
C4-N5-C5A-C5	66.2(4)
N5-C5A-C5-NT	-135.8(3)

Table S2. Selected torsion angles [°] for 2a.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N3-H3O2F	0.86	2.45	3.292(3)	168
N4-H4O1	0.86	2.15	2.947(3)	155
N5-H5O2	0.86	2.29	3.069(3)	151
N6-H6O6#1	0.86	2.15	2.989(3)	164
N1-H1O3#2	0.86	2.32	3.142(2)	161
N2-H2O5#3	0.86	2.29	2.906(3)	128
NT-HT1O3#4	0.86	2.37	3.197(4)	160
NT-HT2O2#4	0.86	2.50	3.061(4)	124

Table S3. Hydrogen bonds for 2a [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+2, y-1/2, -z+1/2; #2 x, y+1, z; #3 x+1/2, -y+1/2, -z; #4 x-1/2, -y-1/2, -z

 Table S4. Crystal data and structure refinement for 3c.

Identification code	mc265f	mc265f		
Empirical formula	$C_{19}H_{32}N_2O_6$	$C_{19}H_{32}N_2O_6$		
Formula weight	384.46	384.46		
Temperature	293(2) K			
Wavelength	1.54178 Å			
Crystal system	Orthorhombic			
Space group	P 2 ₁ 2 ₁ 2 ₁			
Unit cell dimensions	a = 12.78876(14) Å	α= 90°.		
	b = 21.3074(2) Å	β= 90°.		
	c = 42.2055(6) Å	$\gamma = 90^{\circ}.$		
Volume	11500.8(2) Å ³			
Z	20			
Density (calculated)	1.110 Mg/m ³			
Absorption coefficient	0.678 mm ⁻¹			
F(000)	4160			
Crystal size	$0.40\times0.20\times0.05~mm^3$			
Theta range for data collection	2.323 to 51.482°.			
Index ranges	$-12 \le h \le 12, -21 \le k \le 2$	$-12 \le h \le 12, -21 \le k \le 21, -42 \le l \le 42$		
Reflections collected	50259			
Independent reflections	12491 [R(int) = 0.0263]			
Completeness to theta = 51.482°	99.5 %			
Absorption correction	Semi-empirical from equ	ivalents		
Max. and min. transmission	1.00000 and 0.77746			
Refinement method	Full-matrix least-squares	on F ²		
Data / restraints / parameters	12491 / 975 / 1216	12491 / 975 / 1216		
Goodness-of-fit on F ²	1.044	1.044		
Final R indices [I>2sigma(I)]	$R_1 = 0.0525, wR_2 = 0.14$	$R_1 = 0.0525, wR_2 = 0.1481$		
R indices (all data)	$R_1 = 0.0601, wR_2 = 0.15$	$R_1 = 0.0601, wR_2 = 0.1558$		
Absolute structure parameter	0.04(5)	0.04(5)		
Extinction coefficient	n/a			
Largest diff. peak and hole	0.683 and -0.276 e.Å ⁻³			

Table S5.Selected torsion angles [°] for 3c.

C1M-N1-C1A-C1	-51.7(6)
N1-C1A-C1B1-C1G1	59.8(6)
N1-C1A-C1B1-C1G2	-173.3(6)
N1-C1A-C1-OTA	-37.7(6)
C1A-C1-OTA-CT1A	-176.6(7)
C1-OTA-CT1A-CT4A	180.0(9)
C1-OTA-CT1A-CT3A	61.5(11)
C1-OTA-CT1A-CT2A	-62.4(11)
C1A-N1-C1M-C2M	-179.1(5)
O1M-C1M-C2M-C3M	168.4(7)
N1-C1M-C2M-C3M	-12.3(11)
C1M-C2M-C3M-C4M	1.8(13)
C2M-C3M-C4M-O2M	15.1(11)
C2M-C3M-C4M-N2	-166.5(7)
C3M-C4M-N2-C2A	-176.6(6)
C4M-N2-C2A-C2	-55.0(8)
N2-C2A-C2-OTB	-34.5(9)
C2A-C2-OTB-CTB	166.0(13)
C11M-N3-C3A-C3	-46.2(7)
N3-C3A-C3B1-C3G2	-65.3(7)
N3-C3A-C3B1-C3G1	168.1(6)
N3-C3A-C3-OTC	-43.8(6)
C3A-C3-OTC-CT1C	176.3(5)
C3-OTC-CT1C-CT2C	-59.7(11)
C3-OTC-CT1C-CT3C	67.6(10)
C3-OTC-CT1C-CT4C	-177.4(7)
C3A-N3-C11M-C12M	171.3(5)
O11M-C11M-C12M-C13M	165.8(6)
N3-C11M-C12M-C13M	-12.5(10)
C11M-C12M-C13M-C14M	3.7(12)
C12M-C13M-C14M-O12M	22.4(11)
C12M-C13M-C14M-N4	-159.3(7)
C13M-C14M-N4-C4A	-179.8(7)
C14M-N4-C4A-C4	-46.7(10)
N4-C4A-C4-OTD	-40.4(9)
C4A-C4-OTD-CTD	177.0(8)
C21M-N5-C5A-C5	-48.9(6)

N5-C5A-C5B1-C5G2	-60.7(7)
N5-C5A-C5B1-C5G1	172.8(6)
N5-C5A-C5-OTE	-43.3(6)
C5A-C5-OTE-CT1E	179.6(5)
C5-OTE-CT1E-CT3E	-177.0(6)
C5-OTE-CT1E-CT2E	-58.2(8)
C5-OTE-CT1E-CT4E	63.0(8)
C5A-N5-C21M-C22M	179.0(5)
O21M-C21M-C22M-C23M	166.8(7)
N5-C21M-C22M-C23M	-13.6(11)
C21M-C22M-C23M-C24M	4.8(12)
C22M-C23M-C24M-O22M	21.8(11)
C22M-C23M-C24M-N6	-158.0(7)
C23M-C24M-N6-C6A	-179.6(5)
C24M-N6-C6A-C6	-44.4(8)
N6-C6A-C6-OTF	-41.8(7)
C6A-C6-OTF-CTF	173.0(6)
C31M-N7-C7A-C7	-47.3(7)
N7-C7A-C7B1-C7G2	-61.8(7)
N7-C7A-C7B1-C7G1	174.5(6)
N7-C7A-C7-OTG	-47.1(6)
C7A-C7-OTG-CT1G	176.5(5)
C7-OTG-CT1G-CT3G	-173.1(7)
C7-OTG-CT1G-CT4G	64.7(9)
C7-OTG-CT1G-CT2G	-57.4(9)
C7A-N7-C31M-C32M	179.2(5)
O31M-C31M-C32M-C33M	163.7(6)
N7-C31M-C32M-C33M	-16.5(10)
C31M-C32M-C33M-C34M	3.3(12)
C32M-C33M-C34M-O32M	22.5(11)
C32M-C33M-C34M-N8	-161.7(7)
C33M-C34M-N8-C8A	179.9(7)
C34M-N8-C8A-C8	-43.8(11)
N8-C8A-C8-OTH	-44.3(10)
C8A-C8-OTH-CTH	177.5(8)
C41M-N9-C9A-C9	-46.3(7)
N9-C9A-C9B1-C9G1	41.0(9)
N9-C9A-C9B1-C9G2	167.1(8)
N9-C9A-C9-OTI	-45.0(6)

C9A-C9-OTI-CT1I	-177.6(5)
C9-OTI-CT1I-CT4I	63.8(8)
C9-OTI-CT1I-CT3I	-60.4(8)
C9-OTI-CT1I-CT2I	-177.6(6)
C9A-N9-C41M-C42M	179.9(5)
O41M-C41M-C42M-C43M	173.9(6)
N9-C41M-C42M-C43M	-5.2(10)
C41M-C42M-C43M-C44M	5.0(12)
C42M-C43M-C44M-O42M	12.9(10)
C42M-C43M-C44M-N10	-168.8(6)
C43M-C44M-N10-C10A	-176.0(5)
C44M-N10-C10A-C10	-52.9(7)
N10-C10A-C10-OTL	140.6(5)
C10A-C10-OTL-CTL	-180.0(7)

Tabla S6	Hydrogen	bonde	for	3 c [Å	and	٥J
I able So.	Hydrogen	bonds	IOr	sc [A	and	٠[`

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N1-H1O2M	0.86	1.89	2.708(5)	157.5
N3-H3O12M	0.86	1.91	2.715(6)	155.2
N5-H5O22M	0.86	1.93	2.746(6)	157.8
N7-H7O32M	0.86	1.91	2.723(6)	156.0
N9-H9O42M	0.86	1.89	2.706(5)	158.8
N2-H2O31M#1	0.86	2.06	2.911(6)	168.8
N4-H4O21M#2	0.86	2.04	2.875(6)	163.6
N6-H6O11M#1	0.86	2.13	2.970(6)	166.6
N8-H8O1M#2	0.86	2.04	2.883(6)	165.6
N10-H10O41M#3	0.86	2.04	2.877(5)	164.0

Symmetry transformations used to generate equivalent atoms:

#1 -x,y+1/2,-z+1/2 #2 -x+1,y-1/2,-z+1/2 #3 x-1/2,-y+1/2,-z

Synthesis and characterization of compounds

Materials

N,N-diisopropylethylamine (DIPEA), trifluoroacetic acid (TFA), *mono*ethyl fumarate, LiOH, triethylamine (TEA), H-L-Val-OtBu·HCl, *tert*-butyl α-bromoisobutyrate, α-bromo*iso*butyric acid, Pd/C catalyst (10% wt. loading), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) were obtained from Sigma-Aldrich. 1-hydroxy-7-aza-1,2,3-benzotriazole (HOAt) was purchased from GL Biochem (Shanghai).

H-L-(α Me)Val-OH, H-Aib-OMe·HCl, H-L-Val-OMe and H-D,L-Val-OMe were obtained from Bachem. The deuterated solvents DMSO- d_6 , CDCl₃, MeOH- d_3 and MeOD- d_4 were purchased from Euriso-Top (France).

Methods for the synthesis of H-L-(α Me)Val-O^tBu,³ H-Aib₄-Gly-NH₂,⁴ N₃-Aib₄-OMe⁵ and N₃-Aib₈-OMe⁶ have been reported previously.

a) Synthesis of fumaric acid derivative 1

Synthesis of 14

*Mono*ethyl fumarate (390 mg, 2.7 mmol) and HOAt (365 mg, 2.7 mmol) were dissolved in CH₂Cl₂. The suspension was cooled to 0 °C and EDC·HCl (500 mg, 2.7 mmol) was added. After complete dissolution H-(α Me)Val-OtBu (350 mg, 1.87 mmol) and TEA (400 µL, 2.9 mmol) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with KHSO_{4(aq)} 5%, NaHCO_{3(aq)} 5%, brine, dried over MgSO₄, filtered and concentrated. The crude was purified *via* flash chromatography (eluant: petroleum ether/EtOAc increasing the solvent mixture polarity from 9:1 to 8:2). The product was obtained as a colorless oil (500 mg, 85 % yield).

HRMS (ES⁺, MeOH) *m/z* calcd. for C₁₆H₂₇NO₅Na ([M+Na]⁺) 336.1787, found 336.1783. $[\alpha]_D^{20} = -36.3$ (c 1, MeOH). FT-IR $\bar{\nu}_{max}$ 3351, 2977, 1727, 1682, 1259, 1368, 1296, 1272, 1150 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 6.91 (d, *J* = 15.3 Hz, 1H, CH Fum), 6.75 (d, *J* = 15.3 Hz, 1H, CH Fum), 6.60 (s, 1H, NH), 4.24 (q, *J* = 7.1 Hz, 2H, CH₂ Et), 2.42 (hept, *J* = 6.9 Hz, 1H, β CH), 1.63 (s, 3H, β CH₃), 1.47 (s, 9H, O*t*Bu), 1.31 (t, *J* = 7.1 Hz, 3H, CH₃ Et), 1.01 (d, *J* = 7.0 Hz, 3H, γ CH₃), 0.90 (d,

J = 6.9 Hz, 3H, γ CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 172.57, 165.74, 162.55, 137.31, 130.19, 82.56, 64.33, 61.29, 34.17, 28.08, 19.28, 17.75, 17.67, 14.29.

Synthesis of 1

14 (500 mg, 1.6 mmol) was dissolved in 30 mL of THF and a solution of LiOH (260 mg, 10.8 mmol) in 10 mL of H_2O was added. The solution was stirred at r.t. until TLC indicated complete consumption of the starting material. The organic solvent was removed under reduced pressure and the aqueous residue was diluted with 10 mL of H_2O . The aqueous solution was acidified with HCl 1M and extracted with EtOAc (3v). The combined organic phases were washed with KHSO_{4(aq)} 5%, brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The compound was recovered as a white solid (400 mg, 88 % yield).

HRMS (ES⁺, MeOH) *m/z* calcd. for C₁₄H₂₃NO₅Na ([M+Na]⁺) 308.1474, found 308.1477. [α]_D²⁰ = - 38.4 (c 1, MeOH). Mp 213-215 °C. FT-IR $\bar{\nu}_{max}$ 3297, 2975, 1727, 1640, 1534, 1368, 1276, 1147 cm⁻¹. ¹H NMR (500 MHz, MeOD) δ 8.42 (s, 1H, NH), 7.11 (d, *J* = 15.5 Hz, 1H, CH Fum), 6.64 (d, *J* = 15.5 Hz, 1H, CH Fum), 2.13-2.03 (m, 1H, β CH), 1.44 (s, 9H, OtBu), 1.42 (s, 3H, β CH₃), 1.01 (d, *J* = 6.9 Hz, 3H, γ CH₃), 0.95 (d, *J* = 6.9 Hz, 3H, γ CH₃). ¹³C NMR (101 MHz, MeOD) δ 173.48, 168.52, 165.68, 137.85, 131.35, 82.35, 64.55, 35.87, 28.20, 17.71, 17.53, 17.50.

b) Synthesis of fumaramides 2a-f

Synthesis of 2a

1 (140 mg, 0.49 mmol) and HOAt (70 mg, 0.51 mmol) were dissolved in CH_2Cl_2 . The suspension was cooled to 0 °C and EDC·HCl (94 mg, 0.49 mmol) was added. After complete dissolution H-Aib₄-Gly-NH₂ (150 mg, 0.36 mmol) and DIPEA (100 μ L, 0.57 mmol) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue

dissolved in EtOAc. The organic phase was washed with $KHSO_{4(aq)}$ 5%, $NaHCO_{3(aq)}$ 5%, brine, dried over MgSO₄, filtered and concentrated. The crude was purified *via* flash chromatography (eluant: CH₂Cl₂/MeOH 92:8). The product was obtained as a white solid (190 mg, 77% yield).

HRMS (ES⁺, MeOH) *m*/*z* calcd. for C₃₂H₅₅N₇O₉Na ([M+Na]⁺) 704.3959, found 704.3976. [α]_D²⁰ = -8.5 (c 1, MeOH). Mp 263-265 °C. FT-IR $\bar{\nu}_{max}$ 3293, 2930, 1654, 1537, 1468, 1383, 1364 cm⁻¹. ¹H NMR (500 MHz, CD₃CN) δ 7.80 (s, 1H, NH Aib³), 7.79 (t, *J* = 6.5 Hz, 1H, NH Gly), 7.64 (s, 1H, NH Aib⁴), 7.43 (s, 1H, NH Aib¹), 7.14 (s, 1H, NH Aib²), 7.11 (s br, 1H, NHa GlyNH₂), 6.95 (d, *J* = 15.0 Hz, 1H, CH Fum), 6.90 (s, 1H, NH αMeVal), 6.85 (d, *J* = 15.0 Hz, 1H, CH Fum), 5.65 (s, 1H, NHb GlyNH₂), 3.67 (d, *J* = 6.4 Hz, 2H, CH₂ Gly), 2.10-2.06 (m, 1H, βCH αMeVal), 1.45 (s, 6H, 2x βCH₃ Aib), 1.43 (s, 6H, 2x βCH₃ Aib), 1.41 (s, 9H, OrBu), 1.40 (s, 3H, βCH₃ αMeVal), 1.35 (s, 5H, 2x βCH₃ Aib), 0.99 (d, *J* = 6.9 Hz, 3H, γCH₃ αMeVal), 0.92 (d, *J* = 6.9 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, CD₃CN) δ 177.07 (CO Aib³), 176.60 (CO Aib²), 176.27 (CO Aib⁴), 175.30 (CO Aib¹), 173.24 (CO Gly), 172.59 (CO αMeVal), 165.62 (C^bO Fum), 164.18 (C^aO Fum), 134.74 (C^a Fum), 132.98 (C^b Fum), 81.41 (C OrBu), 64.04 (αC αMeVal), 57.72 (αC Aib), 57.51 (αC Aib), 57.48 (αC Aib), 43.60 (αC Gly), 35.49 (βCH αMeVal), 28.07 (CH₃ OrBu), 25.54 (βC Aib⁴), 25.21 (βC Aib³), 25.10 (βC Aib²), 24.91 (βC Aib¹), 17.67 (βCH₃ αMeVal), 17.55 (γC αMeVal), 17.44 (γC αMeVal).

Synthesis of 2b

OtBu-(α Me)Val-Mal-Aib₄-OH (100 mg, 0.16 mmol) was dissolved in 4 mL of dry CH₂Cl₂ and EDC·HCl (38 mg, 0.2 mmol) was added. The solution was stirred at r.t. for 1 h. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic solution was washed with KHSO₄, brine, dried over MgSO₄, filtered and concentrated under reduced pressure The crude oxazolone was then placed under high vacuum before being dissolved in CH₃CN. Then H-Aib₄-Gly-NH₂ (100 mg, 0.24 mmol) was added. The reaction was stirred under reflux for 5 d. The solution was diluted with CH₂Cl₂ and the precipitate was recovered by filtration. After purification by flash chromatography (eluant: CH₂Cl₂/MeOH 95:5), the pure product was recovered as a white solid (55 mg, 33 % yield).

HRMS (ES⁺ MeOH) *m/z* calcd. for C₄₈H₈₃N₁₁O₁₃Na ([M+Na]⁺) 1044.6064, found 1044.6060. [*α*]_D²⁰ = -5.3 (c 1, MeOH). Mp decompose >270 °C. FT-IR $\bar{\nu}_{max}$ 3289, 2981, 1657, 1539, 1384, 1363, 1228 cm⁻¹. ¹H NMR (500 MHz, CD₃CN) δ 7.84 (m, 2H, 2x NH), 7.81 (s, 1H, NH), 7.79 (m, 3H, NH), 7.66 (s, 1H, NH), 7.51 (s, 1H, NH), 7.20 (s, 1H, NH), 7.12 (s, 1H, NH), 6.96 (d, *J* = 15.0 Hz, 1H, CH Fum), 6.91 (s, 1H, NH), 6.87 (d, *J* = 15.0 Hz, 1H, CH Fum), 5.65 (s, 1H, NH), 3.67 (d, *J* = 5.7 Hz, 2H, CH₂ Gly), 2.08 (m, 1H, βCH αMeVal), 1.48 (s, 6H, 2x βCH₃ Aib), 1.45 (s, 6H, 2x βCH₃ Aib), 1.44 (s, 18H, 6x βCH₃ Aib), 1.43 (s, 6H, 2x βCH₃ Aib), 1.42 (s, 6H, 2x βCH₃ Aib), 1.41 (s, 9H, O*t*Bu), 1.40 (s, 3H, βCH₃ αMeVal), 1.36 (s, 6H, 2x βCH₃ Aib), 0.99 (d, *J* = 6.9 Hz, 3H, γCH₃ αMeVal), 0.92 (d, *J* = 6.9 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, CD₃CN) δ 177.32, 177.09, 176.98, 176.95, 176.94, 176.30, 175.39, 173.22, 172.56, 165.66, 164.18, 134.75, 132.99, 81.44, 64.07, 57.72, 57.57, 57.48, 57.43, 57.33, 57.30, 57.27, 43.61, 35.47, 28.06, 25.19, 17.76, 17.53, 17.42.

Synthesis of 2c

1 (35 mg, 0.12 mmol) and HOAt (17 mg, 0.12 mmol) were dissolved in dry CH₂Cl₂. The suspension was cooled to 0 °C and EDC·HCl (23 mg, 0.12 mmol) was added. After complete dissolution H-Aib-OMe·HCl (37 mg, 0.24 mmol) and DIPEA (65 μ L, 0.37 mmol) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with KHSO_{4(aq)} 5%, NaHCO_{3(aq)} 5%, brine, dried over MgSO₄, filtered and concentrated. The product was obtained as a white solid after precipitation from EtOAc/petroleum ether (40 mg, 85% yield).

HRMS (ES⁺ MeOH) m/z calcd. for C₁₉H₃₃N₂O₆ ([M+H]⁺) 385.2333, found 385.2403. Mp 149-152 °C. FT-IR \bar{v}_{max} 3351, 2978, 1730, 1649, 1533, 1367, 1335, 1283, 1152 cm⁻¹.

¹H NMR (500 MHz, CD₃CN) δ 7.09 (s, 1H, NH Aib), 6.87 (d, J = 15.1 Hz, 1H, CH Fum), 6.80 (s, 1H, NH αMeVal), 6.75 (d, J = 15.1 Hz, 1H, CH Fum), 3.62 (s, 3H, OMe), 2.05 (dt, J = 13.8, 6.9 Hz, 1H, βCH αMeVal), 1.44 (s, 6H, 2x βCH₃ Aib), 1.40 (s, 9H, OtBu), 1.38 (s, 3H, βCH₃ αMeVal), 0.97 (d, J = 6.9 Hz, 3H, γCH₃ αMeVal), 0.90 (d, J = 6.9 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, CD₃CN) δ 175.24, 172.67, 164.38, 134.40, 132.99, 81.43, 64.06, 56.93, 52.78, 35.51, 28.15, 25.21, 17.87, 17.60, 17.47.

Synthesis of 2d

1 (35 mg, 0.12 mmol) and HOAt (17 mg, 0.12 mmol) were dissolved in dry CH₂Cl₂. The suspension was cooled to 0 °C and EDC·HCl (23 mg, 0.12 mmol) was added. After complete dissolution H-Aib₂-OMe (48 mg, 0.24 mmol) and DIPEA (22 μ L, 0.12 mmol) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with KHSO_{4(aq)} 5%, NaHCO_{3(aq)} 5%, brine, dried over MgSO₄, filtered and concentrated. The product was obtained as a white solid after precipitation from EtOAc/petroleum ether (45 mg, 80% yield).

HRMS (ES⁺ MeOH) *m/z* calcd. for C₂₃H₄₀N₃O₇ ([M+H]⁺) 470.2871, found 470.2853. Mp 89-90 °C. FT-IR $\bar{\nu}_{max}$ 3356, 2980, 1733, 1652, 1532, 1367, 1277, 1151 cm⁻¹. ¹H NMR (500 MHz, CD₃CN) δ 7.02 (s, 1H, NH Aib¹), 6.96 (s, 1H, NH Aib²), 6.88 (d, *J* = 15.0 Hz, 1H, CH Fum), 6.81 (d, *J* = 15.1 Hz, 2H, CH Fum and NH αMeVal), 3.60 (s, 3H, OMe), 2.05 (dt, *J* = 13.7, 6.8 Hz, 1H, βCH αMeVal), 1.42 (s, 6H, 2x βCH₃ Aib), 1.40 (s, 9H, OtBu), 1.39 (s, 3H, βCH₃ αMeVal), 1.37 (s, 6H, 2x βCH₃ Aib), 0.97 (d, *J* = 6.9 Hz, 3H, γCH₃ αMeVal), 0.91 (d, *J* = 6.8 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, CD₃CN) δ 175.78, 174.25, 172.67, 164.49, 164.46, 133.95, 133.89, 81.45, 64.07, 57.88, 56.77, 52.59, 35.54, 28.16, 25.23, 25.21, 17.88, 17.60, 17.47.

Synthesis of 2e

1 (230 mg, 0.81 mmol) and HOAt (110 mg, 0.81 mmol) were dissolved in dry CH₂Cl₂. The suspension was cooled to 0 °C and EDC·HCl (155 mg, 0.81 mmol) was added. After complete dissolution H-Aib₄-OMe (200 mg, 0.54 mmol, prepared by the quantitative hydrogenolysis of N₃Aib₄-OMe) and DIPEA (140 μ L, 0.81 mmol) were added and the reaction mixture stirred overnight at r. t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with KHSO_{4(aq)} 5%, NaHCO_{3(aq)} 5%, brine, dried over MgSO₄, filtered and concentrated. The crude was purified *via* flash chromatography using as eluent 94:6 CH₂Cl₂/MeOH. The product was obtained as a white solid (280 mg, 81% yield).

HRMS (ES⁺, MeOH) *m/z* calcd. for C₃₁H₅₄N₅O₉ ([M+H]⁺) 640.3916, found 640.3922. $[\alpha]_D^{20} = -8.1$ (c 1, MeOH). Mp 136-137 °C. FT-IR \bar{v}_{max} 3309, 2983, 1728, 1645, 1530, 1457, 1385, 1365, 1273, 1222, 1151, 732 cm⁻¹.

¹H NMR (500 MHz, CD₃CN) δ 7.42 (s, 1H, NH Aib⁴), 7.37 (s, 1H, NH Aib¹), 7.34 (s, 1H, NH Aib³), 7.01 (s, 1H, NH Aib²), 6.93 (d, J = 15.0 Hz, 1H, CH Fum), 6.89 (s, 1H, NH αMeVal), 6.84 (d, J = 15.0 Hz, 1H, CH Fum), 3.58 (s, 3H, OMe), 2.06 (dq, J = 13.7, 6.9 Hz, 1H, βCH αMeVal), 1.42 (s, 6H, 2x βCH₃ Aib³), 1.42 (s, 6H, 2x βCH₃ Aib¹), 1.40 (s, 9H, OtBu), 1.39 (s, 9H, 2x βCH₃ Aib⁴ and βCH₃ αMeVal), 1.31 (s, 6H, 2x βCH₃ Aib²), 0.98 (d, J = 6.9 Hz, 3H, γCH₃ αMeVal), 0.92 (d, J = 6.9 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, CDCl₃) δ 175.85, 174.80, 173.66, 173.02, 172.43, 164.97, 163.10, 135.26, 131.82, 82.14, 64.12, 57.48, 57.03, 56.92, 55.98, 52.32, 34.37, 29.85, 28.12, 25.65, 25.39, 25.05, 24.98, 18.65, 17.70, 17.67.

Synthesis of 2f

1 (100 mg, 0.35 mmol) and HOAt (50 mg, 0.37 mmol) were dissolved in dry CH₂Cl₂. The suspension was cooled to 0 °C and EDC·HCl (70 mg, 0.36 mmol) was added. After complete dissolution, H-Aib₈-OMe (140 mg, 0.2 mmol, prepared by the quantitative hydrogenolysis of N₃Aib₈-OMe) and DIPEA (60 μ L, 0.36 mmol) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with KHSO_{4(aq)} 5%, NaHCO_{3(aq)} 5%, brine, dried over MgSO₄, filtered and concentrated. The product was obtained as a white solid after precipitation from EtOAc/petroleum ether (150 mg, 77% yield).

HRMS (ES⁺ MeOH) *m/z* calcd. for C₄₇H₈₂N₉O₁₃ ([M+H]⁺) 980.6027, found 980.6179. Mp 172-175 °C. FT-IR \bar{v}_{max} 3310, 2986, 2942, 1733, 1659, 1535, 1467, 1458, 1385, 1364, 1229, 1152 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H, NH), 7.85 (s, 1H, NH), 7.80 (s, 1H, NH), 7.75 (s, 2H, 2x NH), 7.72 (s, 1H, NH), 7.49 (s, 1H, NH), 7.27 (s, 1H, NH), 7.08 (s, 1H, NH), 6.95-6.73 (m, 2H, AB system CH₂ Fum), 3.69 (s, 3H, OMe), 2.34 (dt, *J* = 14.1, 6.9 Hz, 1H, βCH αMeVal), 1.78 (s, 12H, 4x βCH₃ Aib), 1.57 (s, 3H, βCH₃ αMeVal), 1.52 (s, 12H, 4x βCH₃ Aib), 1.49 (s, 12H, 4x βCH₃ Aib), 1.47 (s, 15H, OtBu and 2x βCH₃ Aib), 1.41 (s, 6H, 2x βCH₃ Aib), 1.02 (d, *J* = 6.8 Hz, 3H, γCH₃ αMeVal), 0.93 (d, *J* = 6.8 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, CDCl₃) δ 176.49, 176.18, 176.09, 175.72, 175.22, 175.19, 174.69, 172.47, 165.44, 81.97, 64.11, 57.41, 56.99, 56.87, 56.73, 56.70, 56.26, 52.42, 34.47, 28.16, 25.12, 24.93, 18.83, 17.76.

c) Synthesis of 3a

A solution of **6a** (30 mg, 0.044 mmol) in 3 mL of MeOH was irradiated in a quartz cuvette at 254 nm for 2 h. The solvent was removed under reduced pressure obtaining the crude product. Pure compound **7a** was obtained by semipreparative HPLC, after freeze-drying as a white solid.

FT-IR $\bar{\nu}_{max}$ 3289, 2922, 1650, 1539, 1468, 1383, 1364 cm⁻¹. ¹H NMR (500 MHz, CD₃CN) δ 8.61 (s, 1H, NH Aib²), 7.84 (s, 1H, NH Aib³), 7.82 (t, *J* = 6.2 Hz, 1H, NH Gly), 7.70 (s, 1H, NH Aib⁴), 7.46 (s, 1H, NH Aib¹), 7.10 (s br, 1H, GlyNH₂), 7.05 (s, 1H, NH αMeVal), 6.29 (d, *J* = 12.0 Hz, 1H, CH Mal), 6.20 (d, *J* = 12.0 Hz, 1H, CH Mal), 5.64 (s, 1H, GlyNH₂), 2.11-2.06 (m, 1H, βCH αMeVal), 1.44 (s, 12H, OtBu and βCH₃ Aib), 1.43 (s, 3H, βCH₃ Aib), 1.42 (s, 3H, βCH₃ Aib), 1.41 (s, 6H, 2x βCH₃ Aib), 1.38 (s, 3H, βCH₃ αMeVal), 1.36 (s, 6H, 2x βCH₃ Aib), 1.35 (s, 3H, βCH₃ aMeVal), 0.92 (d, *J* = 6.9 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, CD₃CN) δ 177.35 (CO Aib²), 176.93 (CO Aib³), 176.30 (CO Aib⁴), 175.88 (CO Aib¹), 173.26 (CO Gly), 172.31 (CO αMeVal), 168.69 (C^bO Mal), 164.53 (C^aO Mal), 136.05 (C^b Mal), 126.97 (C^a Mal), 81.63 (C OtBu), 64.05 (αC αMeVal), 57.71 (αC Aib), 57.57 (αC Aib x2), 57.33 (αC Aib), 43.60 (αC Gly), 35.46 (βC αMeVal), 28.19 (CH₃ OtBu), 26.43 (βC Aib⁴), 26.23 (βC Aib²), 26.17 (βC Aib³), 26.06 (βC Aib¹), 24.66 (βC Aib⁴), 24.46 (βC Aib¹), 24.33 (βC Aib²), 24.26 (βC Aib³), 17.52 (βCH₃ αMeVal), 17.40 (γC αMeVal), 17.37 (γC αMeVal).

d) Synthesis of 3c

Synthesis of 15

H-(α Me)Val-O*t*Bu (150 mg, 0.8 mmol) was dissolved in 2 mL of dry CH₃CN and TEA (100 μ L, 0.71 mmol) were added. Maleic anhydride (70 mg, 0.71 mmol) was dissolved in 1 mL of dry CH₃CN and added to the solution of the amino acid. The reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with KHSO_{4(aq)} 5% and brine, dried over Na₂SO₄, filtered and concentrated. The product was obtained as a white solid (170 mg, 74% yield).

HRMS (ES⁺, MeOH) *m/z* calcd. for C₁₄H₂₄NO₅ ([M+H]⁺) 286.1649, found 286.1703. Mp 156-159 °C. FT-IR $\bar{\nu}_{max}$ 3306, 3002, 2980, 1727, 1712, 1632, 1593, 1558, 1490, 1368, 1147, 858 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (s, 1H, NH), 6.36 (d, *J* = 12.8 Hz, 1H, CH Mal), 6.29 (d, *J* = 12.9 Hz, 1H, CH Mal), 2.50-2.37 (m, 1H, βCH), 1.65 (s, 3H, βCH₃), 1.49 (s, 9H, OtBu), 1.04 (d, *J* = 7.0 Hz, 3H, γCH₃), 0.92 (d, *J* = 6.9 Hz, 3H, γCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 171.71, 165.22, 164.68, 136.95, 131.52, 83.40, 65.32, 33.84, 27.88, 18.82, 17.53.

Synthesis of 3c

15 (50 mg, 0.17 mmol) and HOAt (23 mg, 0.17 mmol) were dissolved in dry CH₂Cl₂. The suspension was cooled to 0 °C and EDC·HCl (33 mg, 0.17 mmol) was added. After complete dissolution H-Aib-OMe·HCl (54 mg, 0.35 mmol) and DIPEA (90 μ L, 0.52 mmol) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with KHSO_{4(aq)} 5%, NaHCO_{3(aq)} 5%, brine, dried over MgSO₄, filtered and concentrated. The product was obtained as an oil (50 mg, 75% yield).

HRMS (ES⁺, MeOH) *m/z* calcd. for C₁₉H₃₃N₂O₆ ([M+H]⁺) 385.2333, found 385.2435. FT-IR $\bar{\nu}_{max}$ 3280, 2978, 1748, 1729, 1671, 1620, 1578, 1548, 1368, 1286, 1263, 1149, 854 cm⁻¹.

¹H NMR (500 MHz, CD₃CN) δ 8.94 (s, 1H, NH Aib), 8.70 (s, 1H, NH αMeVal), 6.12 (d, J = 13.4 Hz, 1H, CH Mal), 6.06 (d, J = 13.4 Hz, 1H, CH Mal), 3.62 (s, 3H, OMe), 2.02 (dt, J = 13.7, 6.9 Hz, 1H, βCH αMeVal), 1.44 (s, 3H, βCH₃ Aib), 1.43 (s, 3H, βCH₃ Aib), 1.40 (s, 9H, OtBu), 1.36 (s, 3H, βCH₃ αMeVal), 0.98 (d, J = 6.9 Hz, 3H, γCH₃ αMeVal), 0.91 (d, J = 6.9 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, CD₃CN) δ 175.15, 165.20, 134.14, 132.84, 81.36, 64.09, 56.86, 52.76, 35.73, 28.15, 25.16, 25.08, 17.67, 17.61, 17.43.

e) Synthesis of carboxylic acids 4a-b

Synthesis of 4a

2e (320 mg, 0.54 mmol) was dissolved in 15 mL of THF and a solution of LiOH (85 mg, 3.5 mmol) in 5 mL of water was added. The solution was stirred at 40°C for 24 h. The organic solvent was removed under reduced pressure and the aqueous phase was acidified with HCl 1M. The compound was extracted using EtOAc (3v). The organic phase was washed with KHSO_{4(aq)} 5% and brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The product was obtained as a white solid (230 mg, 73% yield).

HRMS (ES⁺, MeOH) *m/z* calcd. for C₃₀H₅₁N₅O₉Na ([M+Na]⁺) 648.3579, found 648.3584. [α]_D²⁰ = -8 (c 1, MeOH). Mp 152-154 °C. FT-IR $\bar{\nu}_{max}$ 3305, 2982, 1728, 1650, 1534, 1458, 1385, 1260, 1225, 1151 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H, NH), 7.89 (s, 1H, NH), 7.87 (s, 1H, NH), 7.23 (s, 1H, NH), 6.97 (s, 1H, NH), 6.87 (m, 2H, AB system CH₂ Fum), 2.40 (m, 1H, βCH αMeVal), 1.59 (s, 3H, βCH₃ αMeVal), 1.56 (s, 6H, 2x βCH₃ Aib), 1.52 (s, 6H, 2x βCH₃ Aib), 1.50 (s, 6H, 2x βCH₃ Aib), 1.47 (s, 9H, OtBu), 1.43 (s, 6H, 2x βCH₃ Aib), 1.01 (d, *J* = 6.7 Hz, 3H, γCH₃ αMeVal), 0.91 (d, *J* = 6.7 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, CDCl₃) δ 176.78, 175.75, 175.56, 174.53, 172.66, 165.39, 163.86, 133.74, 133.07, 82.43, 64.30, 57.33, 56.97, 56.91, 34.21, 29.85, 28.11, 25.19, 24.85, 18.98, 17.78, 17.73.

Synthesis of 4b

2f (120 mg, 0.12 mmol) was dissolved in 10 mL of THF and a solution of LiOH (20 mg, 0.86 mmol) in 5 mL of water was added. The solution was stirred at 60 °C for 48 h, The solution was diluted with CH_2Cl_2 and the aqueous phase was acidified with HCl 1M. The compound was extracted using CH_2Cl_2 (3v). The organic phase was washed with $KHSO_{4(aq)}$ 5% and brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was purified *via* flash chromatography (eluant: $CH_2Cl_2/MeOH$, 93:7 \rightarrow 8:2). The product was obtained as a white solid (80 mg, 68% yield).

HRMS (ES⁺ MeOH) *m/z* calcd. for C₄₆H₈₀N₉O₁₃ ([M+H]⁺) 966.5870, found 966.6056. Mp 190-193 °C. FT-IR \bar{v}_{max} 3309, 2985, 2939, 1728, 1659, 1535, 1385, 1365, 1228 cm⁻¹.

¹H NMR (400 MHz, MeOD) δ 7.10 (d, J = 15.1 Hz, 1H, CH Fum), 6.92 (d, J = 15.1 Hz, 1H, CH Fum), 2.09 (dt, J = 13.6, 6.7 Hz, 1H, βCH αMeVal), 1.52 (s, 6H, 2x βCH₃ Aib), 1.51 (s, 6H, 2x βCH₃ Aib), 1.49 (s, 6H, 2x βCH₃ Aib), 1.48 (s br, 24H, 4x βCH₃ Aib), 1.44 (s, 9H, O*t*Bu), 1.42 (s, 3H, βCH₃ αMeVal), 1.40 (s, 6H, 2x βCH₃ Aib), 1.01 (d, J = 6.7 Hz, 3H, γCH₃ αMeVal), 0.96 (d, J = 6.7 Hz, 3H, γCH₃ αMeVal). ¹³C NMR (101 MHz, MeOD) δ 177.63, 177.48, 177.42, 177.15, 177.01, 176.74, 176.21, 173.54, 166.31, 166.02, 134.67, 133.75, 82.33, 64.57, 57.95, 57.89, 57.83, 57.79, 57.73, 35.86, 28.24, 25.49, 25.14, 17.72, 17.69, 17.56.

f) Synthesis of 12

Synthesis of 16

*Mono*ethyl fumarate (90 mg, 0.62 mmol) and HOAt (85 mg, 0.62 mmol) were dissolved in dry CH_2Cl_2 . The suspension was cooled to 0 °C and EDC·HCl (120 mg, 0.62 mmol) was added. After complete dissolution, H-Aib₄-Gly-NH₂ (130 mg, 0.31 mmol) and TEA (90 µL, 0.65 mmol) were added and the reaction mixture stirred for 48 h at r.t. The precipitate collected and washed with CH_2Cl_2 . The product was recovered after precipitation from MeOH/Et₂O obtaining a white solid (100 mg, 60% yield).

HRMS (ES⁺, MeOH) *m/z* calcd. for C₂₄H₄₀N₆O₈Na ([M+Na]⁺) 563.2805, found 563.2794. Mp 274-275 °C. FT-IR $\bar{\upsilon}_{max}$ 3264, 2985, 1720, 1652, 1533, 1455, 1386, 1363, 1281, 1223, 1172 cm⁻¹.

¹H NMR (400 MHz, MeOD) δ 7.10 (d, J = 15.4 Hz, 1H, CH Fum), 6.74 (d, J = 15.5 Hz, 1H, CH Fum), 4.26 (q, J = 7.1 Hz, 2H, CH₂ Et), 3.83 (s, 2H, CH₂ Gly), 1.50 (s, 6H, 2x βCH₃ Aib), 1.49 (s, 6H, 2x βCH₃ Aib), 1.47 (s, 6H, 2x βCH₃ Aib), 1.39 (s, 6H, 2x βCH₃ Aib), 1.31 (t, J = 7.1 Hz, 3H, CH₃ Et). ¹³C NMR (101 MHz, MeOD) δ 178.09, 178.05, 177.81, 176.09, 175.40, 166.79, 165.65, 137.58, 131.26, 62.32, 58.14, 58.03, 57.88, 57.79, 43.68, 25.58, 25.27, 14.45.

Synthesis of 10

16 (70 mg, 0.13 mmol) was dissolved in 6 mL of THF and a solution of LiOH (22 mg, 0.92 mmol) in 4 mL of water was added. The solution was stirred at r.t. for 1 h. The organic solvent was removed under reduced pressure and the aqueous phase was acidified with HCl 1M. After 24 h, the compound precipitated from the solution was recovered by filtration. The product was obtained as a white solid (50 mg, 73% yield).

HRMS (ES⁺, MeOH) *m/z* calcd. for C₂₂H₃₆N₆O₈Na ([M+Na]⁺) 535.2492, found 535.2493. Mp 274-275 °C. FT-IR $\bar{\upsilon}_{max}$ 3300, 2986, 1659, 1537, 1386, 1224 cm⁻¹.

¹H NMR (400 MHz, MeOD) δ 7.07 (d, J = 15.4 Hz, 1H, CH Fum), 6.71 (d, J = 15.4 Hz, 1H, CH Fum), 3.83 (s, 2H, CH₂ Gly), 1.50 (s, 6H, 2x βCH₃ Aib), 1.49 (s, 6H, 2x βCH₃ Aib), 1.47 (s, 6H, 2x βCH₃ Aib), 1.39 (s, 6H, 2x βCH₃ Aib). ¹³C NMR (101 MHz, MeOD) δ 178.17, 178.12, 178.11,

178.09, 177.92, 176.14, 175.41, 168.38, 165.86, 137.55, 131.85, 58.23, 58.14, 57.85, 57.81, 43.68, 25.58, 25.30, 25.08.

Synthesis of N₃-Aib₄-Ala-OtBu (17)

N₃-Aib₄-OH (230 mg, 0.6 mmol) and HOAt (106 mg, 0.77 mmol) were dissolved in dry CH₂Cl₂. After cooling to 0 °C EDC·HCl (120 mg, 0.6 mmol) was added. Then H-Ala-OtBu·HCl (217 mg, 1.2 mmol) and TEA (250 μ L, 1.8 mmol) were added and the reaction mixture stirred for 48 h at r.t. The reaction mixture was diluted with CH₂Cl₂ and washed with KHSO_{4(aq)} 5%, NaHCO_{3(aq)} 5%, brine. The organic phase was dried over MgSO₄, filtered and concentrated. The crude was purified *via* flash chromatography (eluant: CH₂Cl₂/MeOH 93:7), yielding the product as a white solid (260 mg, 85 % yield).

HRMS (ES⁺, MeOH) *m/z* calcd. for C₂₃H₄₁N₇O₆Na ([M+Na]⁺) 534.3016, found 534.3008. [α]_D²⁰ = - 53.1 (c 1, MeOH). Mp 164-166 °C. FT-IR $\bar{\nu}_{max}$ 3325, 2982, 2112, 1732, 1655, 1519, 1457, 1382, 1365, 1223, 1152 cm⁻¹.

¹H NMR (400 MHz, MeOD) δ 4.19 (q, J = 7.3 Hz, 1H, αCH Ala), 1.53 (s, 3H; βCH₃ Aib), 1.52 (s, 6H, 2x βCH₃ Aib), 1.49 (s, 3H, βCH₃ Aib), 1.44 (s, 6H, 2x βCH₃ Aib), 1.44 (s, 9H, OtBu), 1.42 (d, J = 7.4 Hz, 3H, βCH₃ Ala), 1.39 (s, 3H, βCH₃ Aib), 1.35 (s, 3H, βCH₃ Aib). ¹³C NMR (101 MHz, MeOD) δ 177.21, 176.35, 176.25, 174.61, 173.64, 82.13, 64.75, 57.97, 57.94, 57.80, 50.77, 28.22, 27.41, 26.74, 25.52, 24.53, 24.46, 24.17, 24.12, 23.91, 17.10.

Synthesis of H-Aib₄-Ala-OtBu (11)

$${}_{\mathsf{H}_2\mathsf{N}} \bigvee_{\mathsf{H}} \overset{\mathsf{H}}{\underset{\mathsf{M}}{\overset{\mathsf{H}}{\underset{\mathsf{H}}}} \overset{\mathsf{H}}{\underset{\mathsf{H}}{\overset{\mathsf{H}}{\underset{\mathsf{H}}}} \overset{\mathsf{H}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{} \overset{\mathsf{H}}}{\overset{\mathsf{H}}} \overset{\mathsf{H}}}{\underset{\mathsf{H}}} \overset{\mathsf{H}}}{} \overset{\mathsf{H$$

N₃-Aib₄-Ala-OtBu (210 mg, 0.41 mmol) was dissolved in 8 mL of EtOH under a nitrogen atmosphere. Pd/C catalyst (30 mg) was carefully added and the reaction mixture stirred under H₂ atmosphere for 24 h. The catalyst was removed by filtration through a pad of Celite and the filtrate concentrated under reduced pressure to yield the product as a white solid (170 mg, 85% yield). HRMS (ES⁺, MeOH) *m/z* calcd. for C₂₃H₄₃N₅O₆Na ([M+Na]⁺) 508.3111, found 508.3114. $[\alpha]_D^{20} = -52.3$ (c 1, MeOH). Mp 179-181 °C. FT-IR $\bar{\nu}_{max}$ 3308, 2981, 1730, 1653, 1525, 1456, 1382, 1363,

1226, 1165 cm⁻¹. ¹H NMR (400 MHz, MeOD) δ 4.20 (q, J = 7.3 Hz, 1H, αCH Ala), 1.52 (s, 3H, βCH₃ Aib), 1.50 (s, 3H, βCH₃ Aib), 1.44 (s, 15H, OtBu and 2x βCH₃ Aib), 1.42 (d, J = 7.4 Hz, 3H, βCH₃ Ala), 1.40 (s, 3H, βCH₃ Aib), 1.36 (s, 3H, βCH₃ Aib), 1.33 (s, 3H, βCH₃ Aib), 1.32 (s, 3H, βCH₃ Aib). ¹³C NMR (101 MHz, MeOD) δ 179.61, 177.26, 176.62, 176.49, 173.66, 82.13, 57.96, 57.74, 57.40, 55.67, 50.75, 28.54, 28.23, 28.08, 27.43, 26.83, 25.70, 24.20, 24.17, 24.00, 17.12.

Synthesis of OtBu-Ala-Aib₄-Fum-Aib₄-Gly-NH₂ (12)

10 (33 mg, 0.062 mmol) and HOAt (10 mg, 0.073 mmol) were dissolved in dry CH₂Cl₂. After cooling to 0 °C EDC·HCl (12 mg, 0.062 mmol) was added. Then **11** (35 mg, 0.072 mmol) and DIPEA (20 µL, 0.11 mmol) were added and the reaction mixture stirred for 48 h at r.t. The solid was recovered and washed with CH₂Cl₂. The crude product was purified *via* flash chromatography (eluant: CH₂Cl₂/MeOH 90:15). The product was recovered as a white solid (20 mg, 33 % yield). HRMS (ES⁺, MeOH) *m*/*z* calcd. for C₄₅H₇₈N₁₁O₁₃ ([M+H]⁺) 980.5781, found 980.5770. [α]_D²⁰ = +11 (c 0.1, MeOH). Mp >267 °C decompose. FT-IR $\bar{\nu}_{max}$ 3295, 2985, 1656, 1537, 1384, 1364, 1226 cm^{-1.1}H NMR (500 MHz, MeOD) δ 7.08 (s, 2H, CH₂ Fum), 4.22 (q, *J* = 7.3 Hz, 1H, α CH Ala), 3.83 (s, 2H, CH₂ Gly), 1.53 (s, 3H, β CH₃ Aib), 1.52 (s, 3H, β CH₃ Aib), 1.51 (s, 12H, 4x β CH₃ Aib), 1.50 (s, 3H, β CH₃ Aib), 1.47 (s, 6H, 2x β CH₃ Aib), 1.46 (s, 6H, 2x β CH₃ Aib), 1.45 (s, 9H, OtBu), 1.44 (s, 3H, β CH₃ Aib), 1.43 (d, *J* = 7.4 Hz, 3H, β CH₃ Ala), 1.38 (s, 3H, β CH₃ Aib), 1.34 (s, 3H, β CH₃ Aib).

Figure S14. ¹H NMR (400 MHz) spectra of 14 in CDCl₃.

Figure S15. ¹³C NMR (101 MHz) spectra of 14 in CDCl₃.

ppm

Figure S17. ¹³C NMR (101 MHz) spectra of 1 in MeOD.

190 180 170 160 150 140

Figure S18. ¹H NMR (500 MHz) spectra of 2a in CD₃CN.

Figure S19. ¹³C NMR (101 MHz) spectra of 2a in CD₃CN.

Figure S20. ¹H NMR (500 MHz) spectra of 2b in CD₃CN.

Figure S21. ¹³C NMR (101 MHz) spectra of 2b in CD₃CN.

Figure S23. ¹³C NMR (101 MHz) spectra of 2c in CD₃CN.

Figure S24. ¹H NMR (500 MHz) spectra of 2d in CD₃CN.

Figure S25. ¹³C NMR (101 MHz) spectra of 2d in CD₃CN.

Figure S26. ¹H NMR (500 MHz) spectra of 2e in CD₃CN.

Figure S27. ¹³C NMR (101 MHz) spectra of 2e in CDCl₃.

Figure S28. ¹H NMR (400 MHz) spectra of 2f in CDCl₃.

Figure S29. ¹³C NMR (101 MHz) spectra of 2f in CDCl₃.

Figure S30. ¹H NMR (500 MHz) spectra of 3a in CD₃CN.

Figure S31. ¹³C NMR (101 MHz) spectra of 3a in CD₃CN.

Figure S32. ¹H NMR (500 MHz) spectra of 15 in CDCl₃.

Figure S33. ¹³C NMR (101 MHz) spectra of 15 in CDCl₃.

Figure S34. ¹H NMR (500 MHz) spectra of **3c** in CD₃CN.

Figure S35. ¹³C NMR (101 MHz) spectra of 3c in CD₃CN.

Figure S36. ¹H NMR (500 MHz) spectra of 4a in CDCl₃.

Figure S37. ¹³C NMR (101 MHz) spectra of 4a in CDCl₃.

Figure S39. ¹³C NMR (101 MHz) spectra of 4b in MeOD.

Figure S40. ¹H NMR (400 MHz) spectra of 16 in MeOD.

Figure S41. ¹³C NMR (101 MHz) spectra of 16 in MeOD.

Figure S42. ¹H NMR (400 MHz) spectra of 10 in MeOD.

Figure S43. ¹³C NMR (101 MHz) spectra of 10 in MeOD.

Figure S44. ¹H NMR (400 MHz) spectra of 17 in MeOD.

Figure S45. ¹³C NMR (101 MHz) spectra of 17 in MeOD.

Figure S46. ¹H NMR (400 MHz) spectra of 11 in MeOD.

Figure S47. ¹³C NMR (101 MHz) spectra of 11 in MeOD.

Figure S48. ¹H NMR (500 MHz) spectra of 12 in MeOD.

Figure S49. 2D NOESY NMR spectrum of 2a (500 MHz in CD₃CN).

Figure S50. 2D NOESY NMR spectrum of 3a (500 MHz in CD₃CN).

S52

Figure S51. HMBC spectrum of 2a (600 MHz in CD₃CN).

Figure S52. HMQC spectrum of 2a (600 MHz in CD₃CN).

Figure S53. HMBC spectrum of 3a (600 MHz in CD₃CN).

Figure S54. HMQC spectrum of 3a (600 MHz in CD₃CN).

Figure S55. 2D NOESY NMR spectrum of 2c (400 MHz in CD₃CN).

Figure S56. 2D NOESY NMR spectrum of 3c (400 MHz in CD₃CN).

Figure S57. 2D NOESY NMR spectrum of 2d (400 MHz in CD₃CN).

Figure S58. 2D NOESY NMR spectrum of 2d after irradiation (400 MHz in CD₃CN).

Figure S59. 2D NOESY NMR spectrum of 2e (400 MHz in CD₃CN).

Figure S60. 2D NOESY NMR spectrum of 2e after irradiation (400 MHz in CD₃CN).

Supporting References

- M. C. Burla, R. Caliandro, B. Carrozzini, G.L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, *J. Appl. Crystallogr.* 2015, 48, 306-309.
- [2] G.M. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.
- [3] C. Toniolo, M. Crisma, G. M. Bonora, B. Klajc, F. Lelj, P. Grimaldi, A. Rosa, S. Polinelli, E. M. Meijer, H. E. Schoemaker, J. Kamphuis, *Int. J. Pept. Protein Res.*, **2009**, *38*, 242–252.
- [4] R. A. Brown, T. Marcelli, M. De Poli, J. Solà, and J. Clayden, Angew. Chem. Int. Ed. 2012, 51, 1395-1399.
- [5] S. J. Pike, J. Raftery, S. J. Webb, J. Clayden, Org. Biomol. Chem., 2014, 12, 4124-4131.
- [6] J. Solà, M. Helliwell, J. Clayden, *Biopolymers*, 2011, 95, 62–69.