5,536 research outputs found

    Identification of Bare-Airframe Dynamics from Closed-Loop Data Using Multisine Inputs and Frequency Responses

    Get PDF
    Amethod is presented for computing multiple-input multiple-output frequency responses of bare-airframe dynamics for systems excited using orthogonal phase-optimized multisines and including correlated data arising from control mixing or feedback control. The estimation was posed as the solution to an underdetermined system of linear equations, for which additional information was supplied using interpolation of the frequency responses. A simulation model of the NASA T-2 aircraft having two inputs and two outputs was used to investigate the method in the open-loop configuration and under closed-loop control. The method was also applied to flight test data from the X-56A aeroelastic demonstrator having five inputs and ten outputs and flying under closed-loop control with additional control allocation mixing. Results demonstrated that the proposed method accurately estimates the bare airframe frequency responses in the presence of correlated data from control mixing and feedback control. Results also agreed with estimates obtained using different methods that are less sensitive to correlated inputs

    Pork Versus Public Goods: An Experimental Study of Public Good Provision Within a Legislative Bargaining Framework

    Get PDF
    We experimentally investigate a legislative bargaining model with both public and particularistic goods. Consistent with the qualitative implications of the model: There is near exclusive public good provision in the pure public good region, in the pure private good region minimum winning coalitions sharing private goods predominate, and in the ‘mixed’ region proposers generally take some particularistic goods for themselves, allocating the remainder to public goods. As in past experiments, proposer ower is not nearly as strong as predicted, resulting in public good provision decreasing in the mixed region as its relative value increases, which is inconsistent with the theory.Legislative Bargaining, Public Goods, Efficiency

    Survival of microorganisms in desert soil exposed to five years of continuous very high vacuum

    Get PDF
    Microorganism survivability in desert algal soil crust under continuous very high vacuu

    Statistical Dynamics of Religions and Adherents

    Get PDF
    Religiosity is one of the most important sociological aspects of populations. All religions may evolve in their beliefs and adapt to the society developments. A religion is a social variable, like a language or wealth, to be studied like any other organizational parameter. Several questions can be raised, as considered in this study: e.g. (i) from a ``macroscopic'' point of view : How many religions exist at a given time? (ii) from a ``microscopic'' view point: How many adherents belong to one religion? Does the number of adherents increase or not, and how? No need to say that if quantitative answers and mathematical laws are found, agent based models can be imagined to describe such non-equilibrium processes. It is found that empirical laws can be deduced and related to preferential attachment processes, like on evolving network; we propose two different algorithmic models reproducing as well the data. Moreover, a population growth-death equation is shown to be a plausible modeling of evolution dynamics in a continuous time framework. Differences with language dynamic competition is emphasized.Comment: submitted to EP

    Reaction Brownian Dynamics and the effect of spatial fluctuations on the gain of a push-pull network

    Full text link
    Brownian Dynamics algorithms are widely used for simulating soft-matter and biochemical systems. In recent times, their application has been extended to the simulation of coarse-grained models of cellular networks in simple organisms. In these models, components move by diffusion, and can react with one another upon contact. However, when reactions are incorporated into a Brownian Dynamics algorithm, attention must be paid to avoid violations of the detailed-balance rule, and therefore introducing systematic errors in the simulation. We present a Brownian Dynamics algorithm for reaction-diffusion systems that rigorously obeys detailed balance for equilibrium reactions. By comparing the simulation results to exact analytical results for a bimolecular reaction, we show that the algorithm correctly reproduces both equilibrium and dynamical quantities. We apply our scheme to a ``push-pull'' network in which two antagonistic enzymes covalently modify a substrate. Our results highlight that the diffusive behaviour of the reacting species can reduce the gain of the response curve of this network.Comment: 25 pages, 7 figures, submitted to Journal of Chemical Physic

    Injunction Against Prosecution of Divorce Actions in Other States

    Get PDF
    Aims: The formation scenario of extended counter-rotating stellar disks in galaxies is still debated. In this paper, we study the S0 galaxy IC 719 known to host two large-scale counter-rotating stellar disks in order to investigate their formation mechanism. Methods: We exploit the large field of view and wavelength coverage of the Multi Unit Spectroscopic Explorer (MUSE) spectrograph to derive two-dimensional (2D) maps of the various properties of the counter-rotating stellar disks, such as age, metallicity, kinematics, spatial distribution, the kinematical and chemical properties of the ionized gas, and the dust map. Results: Due to the large wavelength range, and in particular to the presence of the Calcium Triplet \u3bb\u3bb8498, 8542, 8662 \uc5 (CaT hereafter), the spectroscopic analysis allows us to separate the two stellar components in great detail. This permits precise measurement of both the velocity and velocity dispersion of the two components as well as their spatial distribution. We derived a 2D map of the age and metallicity of the two stellar components, as well as the star formation rate and gas-phase metallicity from the ionized gas emission maps. Conclusions: The main stellar disk of the galaxy is kinematically hotter, older, thicker and with larger scale-length than the secondary disk. There is no doubt that the latter is strongly linked to the ionized gas component: they have the same kinematics and similar vertical and radial spatial distribution. This result is in favor of a gas accretion scenario over a binary merger scenario to explain the origin of counter-rotation in IC 719. One source of gas that may have contributed to the accretion process is the cloud that surrounds IC 719

    A review of the advantages and limitations of geophysical investigations in landslide studies

    Get PDF
    Landslide deformations involve approximately all geological materials (natural rocks, soil, artificial fill, or combinations of these materials) and can occur and develop in a large variety of volumes and shapes. The characterization of the material inhomogeneities and their properties, the study of the deformation processes, and the delimitation of boundaries and potential slip surfaces are not simple goals. Since the ‘70s, the international community (mainly geophysicists and lower geologists and geological engineers) has begun to employ, together with other techniques, geophysical methods to characterize and monitor landslides. Both the associated advantages and limitations have been highlighted over the years, and some drawbacks are still open. This review is focused on works of the last twelve years (2007-2018), and the main goal is to analyse the geophysical community efforts toward overcoming the geophysical technique limitations highlighted in the 2007 geophysics and landslide review. To achieve this aim, contrary to previous reviews that analysed the advantages and limitations of each technique using a “technique approach,” the analysis was carried out using a “material landslide approach” on the basis of the more recent landslides classification
    corecore