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Amethod is presented for computingmultiple-inputmultiple-output frequency responses of
bare-airframe dynamics for systems excited using orthogonal phase-optimized multisines and
including correlated data arising from control mixing or feedback control. The estimation was
posed as the solution to an underdetermined system of linear equations, for which additional
information was supplied using interpolation of the frequency responses. A simulation model
of the NASA T-2 aircraft having two inputs and two outputs was used to investigate the
method in the open-loop configuration and under closed-loop control. The method was also
applied to flight test data from the X-56A aeroelastic demonstrator having five inputs and ten
outputs and flying under closed-loop control with additional control allocation mixing. Results
demonstrated that the proposed method accurately estimates the bare airframe frequency
responses in the presence of correlated data from control mixing and feedback control. Results
also agreed with estimates obtained using different methods that are less sensitive to correlated
inputs.

I. Nomenclature

az = vertical accelerometer measurement, g
c̄ = mean aerodynamic chord, ft
f = frequency, Hz
g = gravitational acceleration, ft/s2

h = altitude, ft
Iyy = pitch moment of inertia, slug-ft2

j = imaginary number, =
√
−1

m = aircraft mass, slug
q = pitch rate, rad/s
q̄ = dynamic pressure, lbf/ft2
S = wing reference area, ft2
t = time, s
V = airspeed, ft/s
Z , M = vertical force and pitching moment
α = angle of attack, rad
∆ = perturbation
δ = control surface deflection, rad
ζ = damping ratio
λ = pole location
ωn = natural frequency, rad/s
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II. Introduction

Flight test data for research aircraft often contain correlated inputs, for example arising from input control mixing
or feedback control. These correlations obscure the effect of inputs on the output responses, inhibiting system

identification of the bare-airframe dynamics [1]. One approach to this problem is to change the experiment design by
adding unique perturbation excitations to each control surface command after the flight control system but before the
actuator rate and position limiting. These excitations can lower pairwise correlations of the inputs so that standard
estimation methods can be applied in the usual manner. This approach began with the open-loop unstable X-29 aircraft
[2] and has been successfully used in flight tests with the F-18 HARV, X-31, F-15B ACTIVE, X-43A, NASA T-2, and
many others.

When frequency responses are used for the identification of bare-airframe dynamics from correlated data, additional
considerations are necessary, such as those discussed in Ref. [3] using spectral methods. For moderately correlated
inputs, contributions from secondary inputs can be used to condition modeling data or ignored. For highly-correlated
inputs, the joint input-output method has been used [4, 5] to identify bare-airframe frequency responses by considering
the bare-airframe inputs and outputs together as outputs from another reference input.

Another method for frequency response estimation was introduced in Refs. [1, 6]. Orthogonal phase-optimized
multisine inputs were used to excite the aircraft by moving multiple control effectors at the same time but with different
harmonic frequencies. Frequency responses were then computed by dividing Fourier transforms of measured input and
output data at the harmonic frequencies. The method can be run in real-time for multiple-input multiple output (MIMO)
systems and has been used to estimate dynamic models and stability margins, to detect sensor and actuator faults, and
to expedite envelope expansion flight tests. However, as noted in Ref. [5], the accuracy of these frequency response
estimates diminishes when data are correlated and contributions from secondary inputs are ignored. These errors are
introduced because the harmonic frequencies are no longer unique to a particular input, which again obscures the effect
of inputs on the output responses.

In this paper, the frequency response method in Refs. [1, 6] is extended to account for correlated secondary inputs,
such as from control allocation or feedback control. The frequency response estimation is cast as a system of linear
equations. Secondary inputs arising from mixing or feedback create additional unknown frequency response evaluations
that render the system underdetermined. However, additional information can be supplied using interpolation, and
the fully-determined system of linear equations can be efficiently solved for the unknown frequency responses using
standard numerical routines. The solutions in Refs. [1, 6] are recovered in the limit as the input correlations decrease.

This paper is organized as follows. Section III summarizes the orthogonal phase-optimized multisine inputs and
Fourier transform methods used to excite the system and transform the data into the frequency domain at harmonic
frequencies. In Section IV, two sources of data are introduced. The first is a linear simulation model of the short period
dynamics for the NASA T-2 subscale airplane. The second is the X-56A subscale aeroelastic demonstrator aircraft.
Results using the T-2 simulation are presented in Section V for the open-loop configuration, and for when single and
multiple control loops are closed by a feedback control law. These examples illustrate the performance of the method,
demonstrate the effects of secondary inputs and how to account for them, and develop a general approach. Results
presented in Section VI using X-56A flight test data demonstrate the method for a maneuver with control mixing and
feedback control. Conclusions are drawn in Section VII.

Due to ITAR restrictions associated with the X-56A airplane, numerical values for that data are not given in this
paper. The experiment design and system identification analysis in Sections V and VI used routines contained in the
MATLAB®-based software package called System IDentification Programs for AirCraft, or SIDPAC [7].

III. Methods

A. Orthogonal Phase-Optimized Multisine Inputs
The orthogonal phase-optimized multisine inputs, hereafter referred to as multisines, were presented in Refs. [8, 9].

This section summarizes the design of those inputs and discusses implications and advantages for frequency response
estimation. For more discussion on multisines or additional flight test examples, see Ref. [1] and the references therein.

Multisine inputs are applied over the time duration T , which defines the fundamental frequency 1/T . Harmonic
frequencies k/T are included in the multisines, where k is the integer harmonic number. When intended for frequency
response estimation, T is a compromise between meeting operational requirements and achieving fine frequency
resolution. The set of included harmonics, K , is chosen so the excitation spans the bandwidth of interest. Good modeling
results usually necessitate at least two cycles of each frequency, making 2/T a practical lower limit. If lower frequencies
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are desired, the excitation duration should be extended. For designing multisines for multiple inputs, K is divided into
the subsets K1, K2, . . . , Knu . Harmonics are typically assigned to these subsets in an alternating manner where each
input has wide coverage over the excitation bandwidth.

Once the harmonics have been assigned to the inputs, each multisine is assembled as the sum of sinusoids

u j(t) =
∑
k∈K j

ak sin
(

2πk
T

t + φk

)
, for j = 1, 2, . . . , nu (1)

The amplitudes ak are designed according to desired power spectra for each input. A uniform distribution is often used,
where

ak =
Aj√
Mj

, ∀ k ∈ Kj (2)

and where Mj is the number of harmonics in Kj . In this case, each input has a single amplitude Aj selected to
achieve adequate response amplitudes and signal-to-noise ratios. The amplitudes could instead be tailored for specific
applications, such as attenuating known structural resonances or reducing excessive airspeed variation from phugoid
excitation. The phase angles φk are optimized for each input to minimize the relative peak factor

RPF(u j) =
max(u j) −min(u j)

2
√

2 rms(u j)
(3)

This optimization helps to keep the aircraft on condition, which is important for accurate linear modeling.
Multisine inputs are have many characteristics that are advantageous for frequency response estimation. One benefit

is that because they are summations of harmonic sinusoids, multisines are mutually orthogonal and therefore can be
applied to multiple inputs simultaneously for system identification. This property is in contrast to traditional types of
inputs, which must be applied sequentially, one at a time, and therefore use more flight time. Another benefit is that
multisine inputs produce steady-state response data (after initial transients decay), which is the information needed to
estimate frequency responses. For linear systems, multisines are analogous to the original sine-dwell inputs used in
early experiments for frequency response identification [10], but can include many frequencies on many inputs instead
of a single frequency on a single input. Lastly, note that multisines can be designed using no more prior knowledge
about the system in question than is needed for other identification inputs such as frequency sweeps or multi-steps.

B. Fourier Transforms
To estimate frequency responses, measured data are transformed from the time domain to the frequency domain.

The analytical tool for doing this is the finite Fourier transform

x(ω) =
∫ T

0
x(t) e−jωtdt (4)

where x(t) and x(ω) are Fourier transform pairs and where ω = 2π f is the radian frequency. Equation (4) projects the
measured data onto complex exponentials, alternatively represented as phased sinusoids.

Equation (4) can be evaluated in several ways. Fast Fourier transform (FFT) routines are not usually applied for
modeling aircraft dynamics because they give relatively coarse frequency resolution over the bandwidths of interest.
When the entire data record is available, as in batch post-flight analysis, a high-accuracy finite Fourier transform based
on the chirp z-transform and cubic interpolation of the measured data can be used [1, 11]. Alternatively, when the
sampling rate is much higher than the bandwidth of interest, a simpler Euler approximation

x(ω) ' ∆t
N∑
i=1

x(ti) e−jωti (5)

can be used to approximate Eq. (4). This form can be made recursive for real-time analyses as

xi(ω) = λ xi−1(ω) + x(ti) e−jωti (6)

where transforms are updated for each new sample with an addition and a multiplication. This simplicity facilitates the
use with many measurements and frequencies using limited computational resources. The term λ is an exponential
forgetting factor that can be adjusted to systematically discard past data and adapt to more recent information. For more
detailed discussion on these techniques, see Refs. [1, 11, 12] and references therein.
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IV. Test Aircraft

A. T-2 Short Period Simulation Model
The NASA T-2 subscale airplane, shown in Fig. 1, is a dynamically-scaled 5.5% version of a generic commercial

transport aircraft. It has twin jet engines mounted under the wings and retractable tricycle landing gear. The aircraft is
instrumented for modeling and control research and includes air data probes attached to booms mounted on each wing
tip, two inertial measurement units, ambient air sensors, potentiometers on each of the 16 independent control surfaces,
and other sensors.

Fig. 1 T-2 airplane (credit: NASA Langley Research Center).

The linearized short period model approximation of the T-2 bare-airframe dynamics used in Section V was[
Ûα

Ûq

]
=

[
Zα 1 + Zq

Mα Mq

] [
α

q

]
+

[
Zδeo Zδei
Mδeo Mδei

] [
δeo

δei

]
(7a)

[
q
az

]
=

[
0 1

V
g Zα V

g Zq

] [
α

q

]
+

[
0 0

V
g Zδeo

V
g Zδei

] [
δeo

δei

]
(7b)

which has two inputs, two states, and two outputs. The horizontal tail on the T-2 includes four independent control
surfaces. The inputs for Eq. (7) are the symmetric outboard and symmetric inboard elevator deflections

δeo =
1
2
(δeol + δeor ) (8a)

δei =
1
2
(δeil + δeir ) (8b)

where the subscripts “o” and “i” denote outboard and inboard, and where “l” and “r” denote the left and right. The
model state variables are the angle of attack at the aircraft center of mass and the pitch rate. The outputs are the pitch
rate and vertical acceleration at the center of mass, as measured by a rate gyroscope and accelerometer, respectively.
Parameters describing the flight condition, mass properties, and geometry properties of the airplane are listed in
Table 1. The dimensional stability and control derivatives used in Eq. (7) are defined in terms of the corresponding
nondimensional versions listed in Table 2 as

Zα =
q̄S
mV

CZα Zq =
q̄Sc̄

2mV2 CZq Zδ =
q̄S
mV

CZδ (9a)

Mα =
q̄Sc̄
Iyy

Cmα Mq =
q̄Sc̄2

2V Iyy
Cmq Mδ =

q̄Sc̄
Iyy

Cmδ (9b)

These nondimensional stability and control derivatives were identified from flight test data using equation error in the
frequency domain [1] and six repeated maneuvers where multisines were used on each of the 16 control surfaces [13].

The bare-airframe model was augmented with first-order actuator models

δ(ω)

δc(ω)
=

32.42
jω + 32.42

(10)
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Table 1 T-2 simulation flight condition, mass
properties, and geometry values.

Parameter Value Unit

V 130 ft/s
α 4.0 deg
δeo −1.29 deg
δei −1.37 deg
h 1270 ft
m 1.59 slug
Iyy 4.65 slug-ft2

S 5.90 ft2

c̄ 0.915 ft

Table 2 T-2 nondimensional stability and control
derivatives identified from flight test data.

Parameter Estimate Standard error

CZα −3.89 0.0272
CZq −5.28 2.1430

CZδeo
−0.180 0.0312

CZδei
−0.163 0.0296

Cmα −1.29 0.0218
Cmq −38.0 1.7501

Cmδeo
−0.795 0.0260

Cmδei
−0.817 0.0219

where δc is the commanded deflection and δ is the actual deflection. Sensor dynamics for transducers on the T-2
measuring the control surface deflections and aircraft responses were negligible over the bandwidth investigated.
Gaussian white noise sequences were added to each of the measurements, where noise levels were identified from flight
test data for the T-2 in calm air and are listed in Table 3.

Table 3 Measurement noise values for the T-2 simulation.

Measurement Standard deviation Unit

δeo 0.0313 deg
δei 0.0307 deg
q 0.2337 deg/s
az 0.0042 g

B. X-56A MUTT Aeroelastic Demonstrator
The X-56AMulti-Use Technology Testbed (MUTT), shown in Fig. 2, is a subscale aeroelastic demonstrator designed

for studying aeroelastic modeling and active flutter suppression technologies. The X-56A has a lambda-wing planform
with stationary winglets. Two engines are mounted above the aft section of the center body. The landing gear are fixed
and arranged in a tricycle configuration.

A planform view of relevant instrumentation and naming conventions for the X-56A is shown in Fig. 3. There are 10
control surfaces: four along the trailing edges of each wing and two along the trailing edges of the center body. The
trailing-edge control surfaces are first designated with “b f ” for body flap or “w f ” for wing flap. The wing flaps are
additionally annotated with a number that increases from wing root to wing tip. The designations end with “l” or “r” for
left or right. For analysis of decoupled longitudinal motions, symmetric pairs of control surface deflections are denoted
using the “s” subscript and defined, for example using the body flaps, as

δb f s =
1
2

(
δb f l + δb f r

)
(11)

All control deflections are considered positive with trailing-edge down deflection and were measured using string
potentiometers.

The X-56A is instrumented with 18 accelerometers: 4 longitudinal, 3 lateral, and 11 vertical. The embedded
GPS/INS (EGI) installed near the nominal center of mass contains three of these accelerometers. The remaining
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(a) Airplane in flight (credit: NASA / Jim Ross). (b) Three-view drawing schematic.

Fig. 2 The X-56A MUTT subscale aeroelastic demonstrator.

Air data

δb f lδwf 1l

δwf 2l
δwf 3l

δwf 4l

δb f r δwf 1r

δwf 2r
δwf 3r

δwf 4r

cfx, cfz

caz

lmfz rmfz

lmaz rmaz
lofx, lofz rofx, rofz

loaz roaz

lwy rwy

EGI

Gyros

Accelerometers (18)

Control surfaces (10)

Fig. 3 X-56A planform with selected sensor and control surface locations.
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center-body and wing accelerometers are designated first with an “l” for left wing, “c” for center body, or “r” for right
wing; then “w” for winglet, “o” for outboard, or “m” for midspan; followed by “ f ” for forward, or “a” for aft. The last
character is “x,” “y,” or “z” and designates the aircraft body axis in which the instrument is aligned.

The EGI also measures angular rates from a gyroscope and Euler angles. Additional high-rate gyroscopes are
installed in the forward section of the center body. Air data vanes on the boom protruding from the nose measure
angle of attack and flank angle. The nose boom also contains pressure ports, data from which were combined with
temperature and pressure sensor readings to compute airspeed.

A computer-aided design (CAD) model and a finite element model (FEM), tuned to ground vibration test (GVT)
data and tabulated for 25 structural modes at 17 fuel weights, were available. Measurements of fuel flow were combined
with the CAD model and measured weights to model the aircraft mass properties and interpolate the structural modes
during flight.

V. Method Development and Simulation Results
This section discusses frequency response estimates using the T-2 short period simulation. First, the open-loop case

is considered, to demonstrate the method without feedback. Second, pitch rate feedback is used to close one loop and
show degradation of the estimates when correlated secondary inputs are neglected, and then to show how to account for
those inputs. Third, a case with multiple feedback loops is discussed to show the general procedure for computing the
frequency responses in the presence of feedback.

Each of the following examples in this section use the same multisine input perturbations, design parameters for
which are listed in Table 4. The duration for the excitation was T = 20 s, and the inputs contained uniformly-distributed
power over the bandwidth 0.20–1.55 Hz in 0.05 Hz increments. In total, 28 frequencies were divided between the two
inputs in an alternating manner so that each input contained 14 frequencies. The amplitudes of the inputs have been
scaled to realistic values used in flight tests that have provided good data for modeling.

Table 4 Multisine design for the T-2 simulation, T = 20 s.

Outboard elevator Inboard elevator
RPF = 1.01 RPF = 1.07

ak , deg k φk , rad ak , deg k φk , rad

0.6682 4 4.4689 0.6682 5 3.1810
0.6682 6 5.8120 0.6682 7 1.8081
0.6682 8 0.6209 0.6682 9 2.3098
0.6682 10 2.1651 0.6682 11 5.4763
0.6682 12 2.9535 0.6682 13 5.4012
0.6682 14 0.6831 0.6682 15 1.6265
0.6682 16 3.1888 0.6682 17 2.9788
0.6682 18 4.6742 0.6682 19 0.9953
0.6682 20 2.1209 0.6682 21 4.2239
0.6682 22 5.8333 0.6682 23 0.1763
0.6682 24 3.6763 0.6682 25 5.6324
0.6682 26 3.1250 0.6682 27 4.9781
0.6682 28 3.4605 0.6682 29 0.8641
0.6682 30 2.4622 0.6682 31 5.5661
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Fig. 4 Block diagram for the T-2 simulation in open-loop configuration.

A. Open Loop
The T-2 simulation was first excited using the multisine inputs while in the open-loop configuration without a control

law. A block diagram for this setup is shown in Fig. 4. The nomenclature has been generalized for the block diagrams to
more easily handle different scenarios. The signals µ1 and µ2 are the multisine perturbations added to the outboard and
inboard elevator commands, respectively. Because there is no feedback or pilot commands in this example, these signals
are also the commands u1c and u2c sent to the actuators A1 and A2. The actual control surface deflections u1 and u2 are
input to the bare-airframe dynamics, represented as the frequency response matrix

H(ω) =

[
H11(ω) H12(ω)

H21(ω) H22(ω)

]
=


y1(ω)
u1(ω)

y1(ω)
u2(ω)

y2(ω)
u1(ω)

y2(ω)
u2(ω)

 (12)

and create output responses y1 and y2. Measured inputs and outputs, denoted by the additional “m” subscript, are
observed using sensors having dynamics and additive measurement noise, e.g., Sy1 and vy1 .

Measurements from a simulated maneuver are shown in Fig. 5(a). The multisines constructed using values in
Table 4 are shown in the first two plots. These time histories had a pairwise correlation of 0.0, practically zero.
The signal-to-noise ratios for all signals were high and the data perturbation sizes were similar to those in flight test
maneuvers that produced good modeling results.

Fourier transform amplitudes of the measurements are shown in Fig. 5(b). The transforms were only evaluated
at the 28 frequencies used in the multisine inputs because only these frequencies contain power in the steady-state
response. In these plots, blue circles represent the multisine frequencies used for the outboard elevator, whereas red
squares represent the multisine frequencies used for the inboard elevator. In this open-loop case, there are no secondary
inputs and the entire spectra are only due to the respective primary inputs. In other words, δeo only contains power at the
14 frequencies in µ1 (blue) and δei only contains power at the 14 frequencies in µ2 (red). The responses, however, have
power at all of the 28 input frequencies. The slight difference in magnitude of the responses is due to the different values
of control effectiveness for the two elevator surfaces. A slight attenuation of the control surface deflection amplitudes is
present due to the actuator dynamics.

To compute the frequency responses from this data, consider the measurement of the ith response, which can be
expressed using block diagram algebra as

yim (ω) = Syi (ω)yi(ω) + vyi (ω)

= Syi (ω) [Hi1(ω)u1(ω) + Hi2(ω)u2(ω)] + vyi (ω)

= Syi (ω)
[
Hi1(ω) S−1

u1
(ω)

(
u1m (ω) − vu1 (ω)

)
+ Hi2(ω) S−1

u2
(ω)

(
u2m (ω) − vu2 (ω)

) ]
+ vyi (ω) (13)
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Fig. 5 T-2 simulation data in the open-loop configuration.

Measurement noise or error in the sensor models can create errors in the frequency response measurements. However,
sensors can typically be characterized well. If the sensors have sufficiently high bandwidths, those dynamics can be
neglected. Furthermore, the multisines are typically designed so data will have high signal-to-noise ratios, and control
surface deflections typically contain low levels of measurement noise. Although all these effects can be considered
in the analysis, they can typically be neglected (which is done in the remaining development) so that yim ' yi and
u jm ' u j , which simplifies the output measurement to

yi(ω) = Hi1(ω) u1(ω) + Hi2(ω) u2(ω) (14)

In the steady-state response, the output only has power at the frequencies in the multisine excitation. Letting ω1 and
ω2 represent any of the frequencies in K1 and K2, respectively, and evaluating the output in Eq. (14) at each set of
frequencies generates a system of four linear equations


y1(ω1)

y2(ω1)

y1(ω2)

y2(ω2)


=


u1(ω1) 0 u2(ω1) 0 0 0 0 0

0 u1(ω1) 0 u2(ω1) 0 0 0 0
0 0 0 0 u1(ω2) 0 u2(ω2) 0
0 0 0 0 0 u1(ω2) 0 u2(ω2)





H11(ω1)

H21(ω1)

H12(ω1)

H22(ω1)

H11(ω2)

H21(ω2)

H12(ω2)

H22(ω2)


(15)

and eight unknown frequency response evaluations. The first two equations are the outputs evaluated at frequencies in
K1, whereas the second two equations are the outputs evaluated at frequencies in K2. Together, these equations form the
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fundamental linear algebra problem Ax = b. From the block diagram in Fig. 4, note that

u1(ω2) = A1(ω2)µ1(ω2) = 0 (16a)
u2(ω1) = A2(ω1)µ2(ω1) = 0 (16b)

because each control surface only contains frequencies from the corresponding primary input, by design and as shown
in Fig. 5(b). Substituting this result into Eq. (15) eliminates four of the unknown frequency response evaluations and
reduces the system of equations to

y1(ω1)

y2(ω1)

y1(ω2)

y2(ω2)


=


u1(ω1) 0 0 0

0 u1(ω1) 0 0
0 0 u2(ω2) 0
0 0 0 u2(ω2)




H11(ω1)

H21(ω1)

H12(ω2)

H22(ω2)


(17)

which is a fully determined having the solution


H11(ω1)

H21(ω1)

H12(ω2)

H22(ω2)


=


1

u1(ω1)
0 0 0

0 1
u1(ω1)

0 0
0 0 1

u2(ω2)
0

0 0 0 1
u2(ω2)



y1(ω1)

y2(ω1)

y1(ω2)

y2(ω2)


(18)

More generally, the solution is also

Hi j(ωj) =
yi(ωj)

u j(ωj)
(19)

which is the ratio of output and input Fourier transforms at the frequencies contained in the corresponding input.
Equation (19) is applied for each harmonic in the input and the MIMO frequency responses are computed at the
corresponding frequencies. Specifically for this example, the A matrix has 56 × 56 elements because there are two
inputs, two outputs, and 14 frequencies per input.

Computing frequency responses in this manner has several advantages. The analysis is straightforward and does
not require tuning or using engineering judgement to select arbitrary parameters in the calculations. It is applicable to
MIMO systems and is simple enough to run in real time during flight with limited computational resources. For good
signal-to-noise ratios and sufficient time durations, these estimates of the frequency response are accurate and unbiased.

Frequency response estimates for the simulation data are shown in Fig. 6. The plots in the left column, shown with
blue circles, had the outboard elevator as input and were computed at harmonics in K1. Likewise, the plots in the right
column, shown with red squares, correspond to the inboard elevator input and were computed at the harmonics in K2.
These estimates were accurate and were practically equal to the known true frequency responses of the bare-airframe
dynamics, shown as a solid black line over the excitation bandwidth. The effects of noise were small. The dashed purple
lines, which also fell on the true frequency responses, are the solutions of using the output-error approach to match time
histories of the measured responses [1, 14] using Eq. (7) as the parametric model.

B. Single Loop Closure
In this second example, the pitch rate output was fed back to the inboard elevator, as shown by the block diagram in

Fig. 7. This setup has been used with the T-2 aircraft to mimic aircraft damage and faults. The control gain K = −0.2
was used to move the short period pole from λ = −2.56 ± 5.34 j (ωn = 5.92 rad/s, ζ = 0.43) to λ = −4.88 ± 5.09 j
(ωn = 7.05 rad/s, ζ = 0.69) which increased the frequency and damping. In general, the feedback block K can also
model other effects, such as low-pass filters applied to the sensor measurements.

Simulated measurements for this maneuver are shown in Fig. 8(a). The outboard elevator is the same as in the
previous example, whereas the feedback changed the inboard elevator. The correlation between the two control surface
deflections rose to 0.4. While this correlation is much less than the maximum 0.9 guideline typically used for other
estimation methods such as output error [1], it is a large increase from the open-loop example. The pitch rate and
vertical acceleration time histories are also different in form and smaller in amplitude than in the previous example due
to the different inboard elevator waveform.
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Fig. 6 Frequency response estimates as Bode plots for T-2 simulation in open-loop configuration.
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Fig. 8 T-2 simulation data with one loop closure.

The corresponding Fourier transforms of the data are shown in Fig. 8(b). The amplitudes of the pitch rate and
vertical acceleration are lower than in Fig. 5(b). The outboard elevator is the same as before, but the inboard elevator is
smaller in amplitude and decreases near the short period frequency. For estimating frequency responses from this data,
it is important that the inboard elevator contained significant power at frequencies in the outboard elevator multisine,
shown as blue circles. The small amount of feedback led to relatively large secondary inputs in the inboard elevator.
The effects of these correlated secondary inputs on the frequency response estimates are examined next.

To compute frequency responses from this data, the ith measurement is expanded as in Eq. (15). Due to the feedback,

u1(ω2) = A1(ω2)µ1(ω2) = 0 (20a)

as before, but now

u2(ω1) = A2(ω1) [µ2(ω1) − K(ω1)y1(ω1)]

= −A2(ω1)K(ω1)y1(ω1) (20b)

because responses excited by the outboard elevator and containing all 28 frequencies are being fed back to the inboard
elevator. In this case, the frequency responses from the second input (containing the feedback) are

Hi2(ω2) =
yi(ω2)

u2(ω2)
(21a)

as in Eq. (19) for the open-loop case, but the frequency responses from the first input (not containing the feedback) are

Hi1(ω1) =
yi(ω1)

u1(ω1)
−

Hi2(ω1) u2(ω1)

u1(ω1)
(21b)

which have additional contributions than in the open-loop case arising from the feedback and dependent upon Hi2(ω1).
Because only Hi2(ω2) was computed in Eq. (21a), additional information is needed to determine Hi2(ω1). One approach
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is to fit the frequency response data Hi2 at frequencies in K2 with a parametric model using the method described in
Ref. [15], and then resample the identified frequency response at frequencies in K1. Another approach is to interpolate
the identified Hi2(ω2) from multiple frequencies in K2 to obtain Hi2(ω1), and use that information to then compute
Hi1(ω1). Viewed another way, substituting the result from Eq. (20) into (15) creates an underdetermined linear system
with four equations and six unknown frequency response evaluations. Adding two additional linear interpolation
equations expressing Hi2(ω1) in terms of Hi2(ω2) makes the system fully determined. For example, two multisines with
alternating frequencies, as in this example, have linear interpolation equations that simplify to

0 = Hi1(ω11) + Hi1(ω12) − 2Hi1(ω21) (22)

where ω11 and ω12 are two neighboring frequencies in K1 spanning ω21 in K2. If the frequency resolution is coarse and
the frequency response has sharp peaks, this approach could introduce errors. However, given an adequate multisine
design, the frequency resolution should be sufficient to obtain accurate results.

If the frequency responses were computed for this example using only Eq. (19), which was developed for the
open-loop case, then Hi2(ω2) is correct but Hi1(ω1) is incorrect. This was demonstrated in Ref. [5] and is a result of
neglecting the second term in the right side of Eq. (21b). If the effects of feedback are properly considered, for example
using the interpolation just described, the bare-airframe dynamics may be accurately computed from closed-loop data.

Frequency response estimates using the simulation data are shown in Fig. 9. Interpolated points were discarded and
not shown. For compatibility with the results in the following section containing multiple loop closures, a simple linear
interpolation scheme was used. A slightly better fit was obtained using a cubic interpolation, but this approach does not
work well in the general case discussed in the next section. Estimates computed using the correct procedure, shown as
solid markers, fell on the true bare-airframe frequency responses. The open-loop estimates, shown as open markers,
are incorrect for frequency responses with δeo (not containing feedback) and correct with δei (containing feedback).
Results using output error to fit time-domain measurements also matched the true frequency responses because the
control surface correlations were much less than 0.9.

In general, as feedback gains increase, the open-loop and closed-loop frequency responses become more different
and the errors incurred from not accounting for secondary inputs become larger. However, as shown in this example,
even small amounts of feedback can lead to significant errors in the frequency response estimates. The analysis becomes
more sensitive to these secondary inputs when there are fewer inputs because each input impacts a larger fraction of the
total response. It is perhaps counter-intuitive that the frequency responses for the input without feedback are the ones
that are incorrect using the open-loop approach.

C. Multiple Loop Closures
In this example, pitch rate was fed back to both the outboard and the inboard elevators, as shown in the block

diagram in Fig. 10. The control gain

K =

[
K11

K21

]
=

[
−0.1
−0.1

]
(23)

was used to move the short period pole from λ = −2.56 ± 5.34 j (ωn = 5.92 rad/s, ζ = 0.43) to λ = −4.84 ± 5.10 j
(ωn = 7.03 rad/s, ζ = 0.69), similar to the previous case with one loop closure. This setup has also been flown on the
T-2 aircraft to test control laws.

Simulated measurements for this maneuver are shown in Fig. 11(a). The control surface deflections, which now both
contain pitch-rate feedback, had a pairwise correlation of 0.3 which is again far less than the maximum 0.9 guideline.
The correlation was less than in the previous case because the feedback was decreased. The pitch rate and vertical
acceleration outputs have approximately the same magnitude as the previous case, which was expected because roughly
the same closed-loop dynamics were achieved by the feedback.

Fourier transforms of the measurements are shown in Fig. 11(b). Both control surfaces now exhibit reduced
amplitudes relative to the open-loop case, decreases in amplitudes near the short period frequency, and mixing of the
multisine frequencies due to the feedback. For δei , the secondary amplitudes resulting from the feedback are half
of those shown in the previous case because the control gain was halved. The spectra for the pitch rate and vertical
acceleration are approximately the same as in the previous case.
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Fig. 9 Frequency response estimates as Bode plots for T-2 simulation with one loop closure.
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Fig. 10 Block diagram for the T-2 simulation with multiple loop closures.
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Fig. 11 T-2 simulation data and Fourier transforms with multiple loop closures.

Output measurements were again expanded as in Eq. (15). In this case, the secondary inputs evaluate as

u1(ω2) = A1(ω2) [µ1(ω2) − K11(ω2)y1(ω2)]

= −A1(ω2)K11(ω2)y1(ω2) (24a)

u2(ω1) = A2(ω1) [µ2(ω1) − K21(ω1)y1(ω1)]

= −A2(ω1)K21(ω1)y1(ω1) (24b)

which are both non-zero due to the feedback. The primary frequency response evaluations are

Hi1(ω1) =
yi(ω1)

u1(ω1)
−

Hi2(ω1) u2(ω1)

u1(ω1)
(25a)

Hi2(ω2) =
yi(ω2)

u2(ω2)
−

Hi1(ω2) u1(ω2)

u2(ω2)
(25b)

which now both contain contributions from correlated secondary inputs. Unlike when only one loop was closed, one
frequency response can not be computed first and then substituted into the remaining equations; rather, more information
must be provided from interpolation and the entire set of unknown frequency responses solved for simultaneously.

The frequency response estimates are shown in Fig. 12. Estimates using the correct closed-loop procedure and
those from an identified model using the traditional output-error approach matched the true frequency responses. The
traditional output-error results were not affected by the feedback because the pairwise correlation was lower than 0.9.
The open-loop estimates of the frequency responses were in error because the additional terms due to the feedback were
neglected, making each frequency response estimate incorrect. The amount of this error is less than in the previous case
because the feedback gains were lower.

For this example, the A matrix becomes a square 56 × 56 element matrix. This system of equations was solved in
MATLAB® on a standard laptop in under 0.003 s. This would be fast enough to perform a real-time analysis for several

15



0

5

10

15

−180

−90

0

90

180

1 10

Mag.,
dB

Phase,
deg

Frequency, rad/s

True
Time-domain OE
Estimate
Open-loop estimate

(a) q/δeo

0

5

10

15

−180

−90

0

90

180

1 10

Mag.,
dB

Phase,
deg

Frequency, rad/s

True
Time-domain OE
Estimate
Open-loop estimate

(b) q/δei

5

10

15

20

−180

−90

0

90

180

1 10

Mag.,
dB

Phase,
deg

Frequency, rad/s

(c) az/δeo

5

10

15

20

−180

−90

0

90

180

1 10

Mag.,
dB

Phase,
deg

Frequency, rad/s

(d) az/δei

Fig. 12 Frequency response estimates as Bode plots for T-2 simulation with multiple loop closures.
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inputs and outputs using standard aircraft research instrumentation and rigid-body dynamics. As data are recorded,
Fourier transforms would be updated using Eq. (6). Then, perhaps at a slower update rate, the matrices in Eq. (15)
would be populated and solved for the frequency response estimates.

For the simulation data used in this example, estimated frequency responses were also accurate when fewer multisine
frequencies were used. Because the frequencies are harmonic multiples, they can be arbitrarily discarded without
affecting the analysis at other frequencies. When all but 5 frequencies from the available 14 frequencies on each input
were discarded, only slight variations in the frequency response estimates were observed. For the output error analysis,
the estimated parameters were approximately the same but the standard errors were larger due to reduced frequency
content and less data information.

VI. Flight Test Results
In this section, results using flight test data from the X-56A aircraft are presented. The maneuver is from Phase 1

and Flight 18 with multisine input FTA 506. The airspeed was at approximately 80% of the predicted flutter speed and
the mean fuel was at 32% capacity.

A block diagram of the simplified longitudinal closed-loop system dynamics for this maneuver, including a control
law for gust load alleviation (GLA), is shown in Fig. 13. The pilot longitudinal stick commanded the flight path angle γ.
The error in the flight path angle was passed through a PID control law to command the pitch rate. The pitch rate error
was combined with a feed-forward and PI control law and passed through a structural filter before forming a (virtual)
elevator command, which was sent to the δwf 2s and δwf 3s surface pairs. The block Kele,q contained a pitch gyro filter
and a notch filter for removing the second symmetric wing bending mode. The center forward vertical acceleration was
fed back through a band-pass filter and a gain to the δb f s surface pairs. The (virtual) symmetric bending acceleration
was computed as

asb
z =

1
4

(
alo fz + aro fz + aloaz + aroaz

)
− 0.7 ac f

z (26)

and was fed back through a band-pass filter and two gains to the δb f s and δwf 4s control surface pairs. Multisine inputs
were added to the actuator commands after the control mixing and feedback. Sensor dynamics were negligible for the
bandwidth examined in this maneuver.

The excitation inputs for this maneuver included five multisines for exciting symmetric pairs of control surface
deflections. In total, 325 frequencies were applied, with 65 on each of the 5 control surface pairs. The pairwise
correlations of the control surface measurements were at most 0.1 for this maneuver. Time histories are shown in
Fig. 14(a) for one cycle of the input (the full maneuver contained about 2.5 cycles of excitation), where each y-axis
contains the same range but different mean value. Fourier transform amplitudes of these data, evaluated at the multisine
frequencies, are shown in Fig. 14(b) where the colors are again used to differentiate the multisine frequencies. The pilot
flight path command and throttle settings were approximately constant through the maneuver. The multisines spanned
the short period and four structural modes which are illustrated in Fig. 15 using the FEM. The multisines were designed
with uniform power spectra. The actuator dynamics created a roll-off with increasing frequency. The effects of mixing
and feedback were most prominent in δwf 2s and δwf 3s near the short period mode, and in δb f s and δwf 4s near the first
symmetric wing bending mode, where the amplitudes from the primary frequencies diminished and where there was
increased content from secondary input frequencies.

Output response data measurements selected for modeling are shown in Fig. 16(a), over the same time scales as
in Fig. 14(a), and Fourier transforms are shown in Fig. 16(b). The modeling outputs were sensor measurements or
combinations of sensor measurements and not exactly the variables used for feedback shown in Fig. 13. The aircraft
responses were small perturbations about the reference flight condition. As shown most clearly by the Fourier transform
data, the short period, SW1B, and SW1T modes were excited by the inputs. There was also some excitation of the
SWL mode, but the excitation bandwidth ended lower than the SWL resonant frequency. For the wing accelerometer
measurements, the “s” denotes a symmetric averaging over measurements from the left and right wings, for example

asmf
z =

1
2

(
almf
z + armf

z

)
(27)

The input and output data were transformed into the frequency domain at the frequencies contained in the multisine
inputs. Simple approximations were then used to estimate and remove time skews from Fourier transforms of the output
response data and scale factor errors for the angle of attack and pitch rate measurements [3, 16]. These corrections to the
data were small but important and improved the estimated frequency responses. Time skews between the control surface
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Fig. 14 X-56A measured input data.
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(a) Mode 7: first symmetric wing bending (SW1B). (b) Mode 9: first symmetric wing torsion (SW1T).

(c) Mode 10: symmetric wing fore-aft (SWFA). (d) Mode 14: symmetric winglet lateral (SWL).

Fig. 15 Longitudinal mode shapes for the X-56A flight data (FEM configuration 24611, version 10.424_dev,
50% fuel). Gray markers are the undeformed grid points and black markers are the deformed points.

deflection measurements and the synchronized output responses, which arose from measuring the data on different data
buses, were estimated at the same time as the nondimensional stability and control derivatives, discussed later.

The frequency responses were then estimated using the general procedure described in Section V.C. The entire
input-output data set was corrected at once, instead of breaking the problem into smaller parts, resulting in an A matrix
from Eq. (15) that had 16250 × 16250 elements (5 inputs, 10 outputs, and 325 frequencies). Application of the “sparse
matrix” variable type in MATLAB® produced solutions in under 0.05 s on a standard laptop computer, which could still
be used for real-time estimation. For comparison, solving the system using standard double-precision variables used 94
s, three orders of magnitude longer in duration.

Frequency response estimates for the q/δwf 4s and aca
z /δwf 4s transfer functions are shown in Fig. 17(a) as Bode

plots. These frequency responses were ones that, due to the bare airframe dynamics, had high signal-to-noise ratios over
most of the input bandwidth. Estimates for all other transfer functions are shown as Bode magnitude plots in Fig. 18.
The color of each set of estimates indicates the corresponding multisine input, consistent with Figs. 14(b) and 16(b). As
before, the solid markers are the correct frequency response estimates, whereas the open markers are the open-loop
estimates. The black lines are fits to the corrected frequency response estimates using output error, as discussed in
Ref. [15], and a parametric model based on nondimensional stability and control derivatives. The dashed purple lines,
taken from Ref. [17], are the frequency responses estimated from the same input-output data and parametric model, but
using output error to match Fourier transforms of measured responses (rather than time histories, as in the simulation
results). Observations for the selected Bode plots in Fig. 17 generally extend to the results shown in Fig. 18. Some of
the responses in Fig. 18, such as the α/δb f s had low sensitivity and signal-to-noise ratios. This could be due to low
sensitivity in the aircraft dynamics or because the body flaps are in the wake of the jet engines. In future maneuvers,
amplitudes of the inboard flaps could be increased to achieve higher signal-to-noise ratios. Using this data in the output
error parameter estimation did not significantly change parameter estimates, but rather increased the standard errors,
which were relatively low. In other results, small mismatches could be due to the truncated aeroelastic modes (even at
lower frequencies, due to couplings) and/or errors in FEM mode shapes substituted in the estimation.

Examining the Bode plots in Fig. 17(a), the corrections had little effect on many of the frequency response points.
As expected, the main differences were near the short period and SW1B modes where most of the mixing and control
activity was present. These corrections were important because the apparent character of the frequency responses
changed from a single combined mode at an intermediate frequency to two distinct (short period and SW1B) modes at
higher and lower frequencies. Errors in computing the frequency responses using the open-loop calculations would have
led to incorrect assessments of the modal frequency and damping ratios, which were being used to update simulations
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Fig. 16 X-56A measured output data.
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Fig. 17 Frequency response estimates as Bode plots for X-56A flight test data.

of the X-56A and tune control laws.
The parametric modeling results, shown in black and purple, considered the short period, SW1B, and SW1T modes.

These identified models were in agreement with the frequency response data and each other. For output error fitting the
frequency response data directly, time skews between the input and response measurements were removed by estimating
a time delay on each input-output channel. This also approximated phase lags due to higher-order structural modes such
as SWL not considered in the model structure [3]. For output error fitting Fourier transforms, a single delay was used to
account for the time skew between the data bus containing the input measurements and the data bus containing the
output measurements. Otherwise the model structure and modeling data were the same. As presented in Ref. [17],
models fitting Fourier transforms matched the flight data well, had good predictive capability for maneuvers with
different types of input excitation and aeroelastic modes resulting from differences in airspeed and fuel weight, and
accurately characterized the aeroelastic instability at higher airspeeds. Similar results were obtained from these two
methods, which used different modeling data, because an adequate model structure was used with good quality data.
Specifically, the fitted frequency response data were corrected for secondary correlated inputs, and the fitted Fourier
transform data had pairwise input correlations of less than 0.1, which were low. These two independent results therefore
support an accurate identification of the X-56A bare airframe dynamics from closed-loop flight test data.

VII. Conclusions
A method was developed for computing multiple-input multiple-output frequency response estimates when the

inputs include orthogonal phase-optimized multisines and correlated inputs arising from control mixing or feedback
control. An earlier approach based on dividing Fourier transforms of measured output by input data at the frequencies
in the multisine inputs was extended to include the effects of these secondary inputs. This formulation led to an
underdetermined system of linear equations. The system was made fully determined by including linear interpolations
of the frequency responses between the multisine frequencies. The method was demonstrated using simulation data in
open loop and with single and multiple loops closed by a control law. The method was also demonstrated using flight
test data from the X-56A airplane flying under closed-loop control with control mixing.

Techniques for system identification break down as inputs become highly correlated because estimators cannot
uniquely attribute responses to the individual inputs. This is a data information issue and not specific to any method.
For output error, it is important to have input correlations less than 0.9. For the proposed method of frequency response
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Fig. 18 Frequency response estimates as Bode magnitude plots for X-56A flight test data.
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estimation, it is important to have input frequencies on distinct inputs, or for the case of feedback explored in this paper,
account for those correlated secondary inputs.

The method is intended for frequency response estimation and is therefore restricted to small perturbation data that
may be reasonably well approximation by a linear system or a first-order describing function. The method is procedural
and does not require tuning parameters or engineering judgement. Although additional computations are needed to
account for correlated secondary inputs, the method can be used with a recursive Fourier transform to run in real time
during flight tests.

The main findings of this research may be summarized as the following:
1) The method accurately estimates frequency responses when input data contain correlated secondary inputs.
2) Estimated frequency response data agreed with results from parametric models identified using output error to

match aircraft response data. Matching response data with output error is less sensitive to correlated input data.
3) Linear interpolation is an adequate approach for obtaining additional information to solve for the unknown

frequency response evaluations. For the data examined here, only a slight degradation in accuracy was seen for a
coarse frequency resolution.

4) The method can be used in real time during flight tests.
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