597 research outputs found

    Study of the Histology of Leafy Axes and Male Cones of Glenrosa carentonensis sp. nov. (Cenomanian Flints of Charente-Maritime, France) Using Synchrotron Microtomography Linked with Palaeoecology

    No full text
    International audienceWe report exceptionally well-preserved plant remains ascribed to the extinct conifer Glenrosa J. Watson et H.L. Fisher emend. V. Srinivasan inside silica-rich nodules from the Cenomanian of the Font-de-Benon quarry, Charente-Maritime, western France. Remains are preserved in three dimensions and mainly consist of fragmented leafy axes. Pollen cones of this conifer are for the first time reported and in some cases remain connected to leafy stems. Histology of Glenrosa has not previously been observed; here, most of internal tissues and cells are well-preserved and allow us to describe a new species, Glenrosa carentonensis sp. nov., using propagation phase-contrast X-ray synchrotron microtomography, a non-destructive technique. Leafy axes consist of characteristic helically arranged leaves bearing stomatal crypts. Glenrosa carentonensis sp. nov. differs from the other described species in developing a phyllotaxy 8/21, claw-shaped leaves, a thicker cuticle, a higher number of papillae and stomata per crypt. Pollen cones consist of peltate, helically arranged microsporophylls, each of them bearing 6–7 pollen sacs. The new high resolution tomographic approach tested here allows virtual palaeohistology on plants included inside a dense rock to be made. Most tissues of Glenrosa carentonensis sp. nov. are described. Lithological and palaeontological data combined with xerophytic features of Glenrosa carentonensis sp. nov. suggest that this conifer has been adapted to survive in harsh and instable environments such as coastal area exposed to hot, dry condition

    Gigantism among Late Jurassic limulids: New ichnological evidence from the Causses Basin (Lozère, France) and comments on body-size evolution among horseshoe crabs

    No full text
    International audienceAn abundant ichnological material composed of xiphosuran trackways and isolated traces was discovered in Upper Jurassic limestones from the Causses Basin (Causse Méjean, Lozère, France). The morphology of the imprints supports their identification as Kouphichnium isp. In contrast to the most frequent case, the trackways are composed of omnipresent pusher imprints sometime associated with leg traces, but with no telson mark. We argue that this pattern reflects actual surface traces rather than an incomplete set of undertracks. The size distribution of the sampled ichnites is broadly bimodal. This is best explained by sexual dimorphism, a phenomenon frequently observed in modern xiphosurans. Analysis of the trace fossils further suggests that several growth stages are recorded and that the horseshoe crabs were walking in a protected and flat environment like a lagoon. This area, certainly close to a mating ground, was occasionally affected by a continental influence. The biometric study of the tracks suggests a gigantic size for the trackmakers whose body may have reached 84 cm in length. This discovery complements the few reports on other gigantic horseshoe crabs in the Jurassic of Western Europe, thus casting doubt on the postulated increase in body size from the Palaeozoic to the Recent. Furthermore, a literature review shows that there are still major gaps in the record of limulid body-fossils and tracks. Thus, neither of these archives can be taken at face value for quantifying the body-size evolution of horseshoe crabs

    Experimental infection of Pacific oyster Crassostrea gigas spat by ostreid herpesvirus 1: demonstration of oyster spat susceptibility

    Get PDF
    In 2008 and 2009, acute mortalities occurred in France among Pacific cupped oyster, Crassostrea gigas, spat. Different hypothesis including the implication of environmental factors, toxic algae and/or pathogens have been explored. Diagnostic tests indicated that OsHV-1 including a particular genotype, termed OsHV-1 μVar, was detected in most of samples and especially in moribund oysters with the highlighting of virus particles looking like herpes viruses by TEM examination. In this study, an experimental protocol to reproduce OsHV-1 infection in laboratory conditions was developed. This protocol was based on the intramuscular injection of filtered (0.22 μm) tissue homogenates prepared from naturally OsHV-1 infected spat collected on French coasts during mortality outbreaks in 2008. Results of the experimental trials showed that mortalities were induced after injection. Moreover, filtered tissue homogenates induced mortalities whereas the same tissue homogenates exposed to an ultraviolet (UV) treatment did not induce any mortality suggesting that oyster spat mortalities require the presence of a UV sensitive agent. Furthermore, analysis of injected oyster spat revealed the detection of high amounts of OsHV-1 DNA by real-time quantitative PCR. Finally, TEM analysis demonstrated the presence of herpes virus particles. The developed protocol allowed to maintain sources of infective virus which can be useful for the development of further studies concerning the transmission and the development of OsHV-1 infection

    The impact of dissolved organic carbon and bacterial respiration on pCO2 in experimental sea ice

    Get PDF
    Previous observations have shown that the partial pressure of carbon dioxide (pCO2) in sea ice brines is generally higher in Arctic sea ice compared to those from the Antarctic sea ice, especially in winter and early spring. We hypothesized that these differences result from the higher dissolved organic carbon (DOC) content in Arctic seawater: Higher concentrations of DOC in seawater would be reflected in a greater DOC incorporation into sea ice, enhancing bacterial respiration, which in turn would increase the pCO2 in the ice. To verify this hypothesis, we performed an experiment using two series of mesocosms: one was filled with seawater (SW) and the other one with seawater with an addition of filtered humic-rich river water (SWR). The addition of river water increased the DOC concentration of the water from a median of 142 µmol Lwater-1 in SW to 249 µmol Lwater-1 in SWR. Sea ice was grown in these mesocosms under the same physical conditions over 19 days. Microalgae and protists were absent, and only bacterial activity has been detected. We measured the DOC concentration, bacterial respiration, total alkalinity and pCO2 in sea ice and the underlying seawater, and we calculated the changes in dissolved inorganic carbon (DIC) in both media. We found that bacterial respiration in ice was higher in SWR: median bacterial respiration was 25 nmol C Lice-1 h-1 compared to 10 nmol C Lice-1 h-1 in SW. pCO2 in ice was also higher in SWR with a median of 430 ppm compared to 356 ppm in SW. However, the differences in pCO2 were larger within the ice interiors than at the surfaces or the bottom layers of the ice, where exchanges at the air–ice and ice–water interfaces might have reduced the differences. In addition, we used a model to simulate the differences of pCO2 and DIC based on bacterial respiration. The model simulations support the experimental findings and further suggest that bacterial growth efficiency in the ice might approach 0.15 and 0.2. It is thus credible that the higher pCO2 in Arctic sea ice brines compared with those from the Antarctic sea ice were due to an elevated bacterial respiration, sustained by higher riverine DOC loads. These conclusions should hold for locations and time frames when bacterial activity is relatively dominant compared to algal activity, considering our experimental conditions

    Interobserver Variation Study of the Rutgeerts Score to Assess Endoscopic Recurrence after Surgery for Crohn's Disease.

    Get PDF
    BACKGROUND: After resection surgery for Crohn's disease, recurrence of endoscopic lesions at the site of the anastomosis or in the neoterminal ileum is graded according to the Rutgeerts score (RS). The goal of this study was to test the interobserver variability for RS. METHODS: Thirteen trained endoscopists evaluated the RS on 39 videotapes of patients who had undergone resection for Crohn's disease with an ileocolonic anastomosis 6 months earlier. Videotapes were randomly assigned to endoscopists through a balanced incomplete block design. Each videotape was scored independently by four endoscopists, and each endoscopist evaluated 12 videotapes, making a total of 156 videotape assessments. Reproducibility levels of the RS were assessed through unweighted kappa estimates among multiple raters. The proportion of inappropriate therapeutic initiation was estimated by randomly selecting one endoscopist for each videorecording, assuming that the majority of endoscopists correctly classified endoscopic recurrence. RESULTS: The kappa estimates were 0.43 (95% confidence interval: 0.33-0.52) for the RS on a 5-grade scale, 0.47 (0.28-0.66) for RS /= i2, and 0.64 (0.42-0.85) for RS i2. The percentages of inappropriate therapeutic initiation were 12.8% (3.8-21.9) when initiation was triggered by a RS >/= i2 and 8.3% (1.1-15.6) when initiation was triggered by a RS > i2 (p = 0.41). CONCLUSION: The reproducibility of the RS was moderate, especially when differentiating /=i2, which may lead to incorrect therapeutic decisions in >10% of patients

    Air-ice carbon pathways inferred from a sea ice tank experiment

    Get PDF
    Air-ice CO2 fluxes were measured continuously using automated chambers from the initial freezing of a sea ice cover until its decay. Cooling seawater prior to sea ice formation acted as a sink for atmospheric CO2, but as soon as the first ice crystals started to form, sea ice turned to a source of CO2, which lasted throughout the whole ice growth phase. Once ice decay was initiated by warming the atmosphere, the sea ice shifted back again to a sink of CO2. Direct measurements of outward ice-atmosphere CO2 fluxes were consistent with the depletion of dissolved inorganic carbon in the upper half of sea ice. Combining measured air-ice CO2 fluxes with the partial pressure of CO2 in sea ice, we determined strongly different gas transfer coefficients of CO2 at the air-ice interface between the growth and the decay phases (from 2.5 to 0.4 mol m−2 d−1 atm−1). A 1D sea ice carbon cycle model including gas physics and carbon biogeochemistry was used in various configurations in order to interpret the observations. All model simulations correctly predicted the sign of the air-ice flux. By contrast, the amplitude of the flux was much more variable between the different simulations. In none of the simulations was the dissolved gas pathway strong enough to explain the large fluxes during ice growth. This pathway weakness is due to an intrinsic limitation of ice-air fluxes of dissolved CO2 by the slow transport of dissolved inorganic carbon in the ice. The best means we found to explain the high air-ice carbon fluxes during ice growth is an intense yet uncertain gas bubble efflux, requiring sufficient bubble nucleation and upwards rise. We therefore call for further investigation of gas bubble nucleation and transport in sea ice
    corecore