255 research outputs found

    Prefrontal-occipitoparietal coupling underlies late latency human neuronal responses to emotion

    Get PDF
    Enhanced late positive potentials (LPPs) evoked by highly arousing unpleasant and pleasant stimuli have been consistently observed in event-related potential experiments in humans. Although the psychological factors modulating the LPP have been studied in detail, the neurobiological underpinnings of this response remain poorly understood. Current models suggest that the LPP is a product of both an automatic facilitation of perceptual activity, as well as postperceptual processing under cognitive control. Here we applied magnetoencephalography (MEG) and beamformer analysis combined with Granger causality measures to provide a mechanistic account for LPP generation that reconciles these two models. We demonstrate that the magnetic homolog of the LPP, mLPP, is localized within bilateral occipitoparietal and right prefrontal cortex. Critically, directed functional connectivity analysis between these brain regions, indexed by Granger causality, demonstrates stronger bidirectional influences between frontal and occipitoparietal cortex for high arousing emotional relative to low arousing neutral pictures. Thus, both bottom-up and top-down accounts of the late latency response to emotion derived from psychological studies can be explained by a reciprocal codependency between activity in prefrontal and occipitoparietal cortex

    Nonlinear quantum model for atomic Josephson junctions with one and two bosonic species

    Full text link
    We study atomic Josephson junctions (AJJs) with one and two bosonic species confined by a double-well potential. Proceeding from the second quantized Hamiltonian, we show that it is possible to describe the zero-temperature AJJs microscopic dynamics by means of extended Bose-Hubbard (EBH) models, which include usually-neglected nonlinear terms. Within the mean-field approximation, the Heisenberg equations derived from such two-mode models provide a description of AJJs macroscopic dynamics in terms of ordinary differential equations (ODEs). We discuss the possibility to distinguish the Rabi, Josephson, and Fock regimes, in terms of the macroscopic parameters which appear in the EBH Hamiltonians and, then, in the ODEs. We compare the predictions for the relative populations of the Bose gases atoms in the two wells obtained from the numerical solutions of the two-mode ODEs, with those deriving from the direct numerical integration of the Gross-Pitaevskii equations (GPEs). Our investigations shows that the nonlinear terms of the ODEs are crucial to achieve a good agreement between ODEs and GPEs approaches, and in particular to give quantitative predictions of the self-trapping regime.Comment: Accepted for the publication in J. Phys. B: At. Mol. Opt. Phy

    Top-down control of visual sensory processing during an ocular motor response inhibition task

    Get PDF
    The study addressed whether top-down control of visual cortex supports volitional behavioral control in a novel antisaccade task. The hypothesis was that anticipatory modulations of visual cortex activity would differentiate trials on which subjects knew an anti- versus a pro-saccade response was required. Trials consisted of flickering checkerboards in both peripheral visual fields, followed by brightening of one checkerboard (target) while both kept flickering. Neural activation related to checkerboards before target onset (bias signal) was assessed using electroencephalography. Pretarget visual cortex responses to checkerboards were strongly modulated by task demands (significantly lower on antisaccade trials), an effect that may reduce the predisposition to saccade generation instigated by visual capture. The results illustrate how top-down sensory regulation can complement motor preparation to facilitate adaptive voluntary behavioral control

    Total orthotopic small bowel transplantation in swine under FK 506

    Get PDF
    Previous experimental studies in rodents and in dogs have established the efficacy of FK 506 in controlling the immunologic events following small bowel or multivisceral transplantation.1–5 To complete the assessment of FK 506 in experimental small bowel transplantation, we present here our experience with the frequently used swine model

    A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type Îł in chronic myeloid leukemia patients

    Get PDF
    Background: Protein tyrosine phosphatase receptor gamma (PTPRG) is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML) have been reported, only one polyclonal antibody (named chPTPRG) has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPÎł B9-2) to better define PTPRG protein downregulation in CML patients. Methods: TPÎł B9-2 specifically recognizes PTPRG (both human and murine) by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Results: Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells). After effective tyrosine kinase inhibitor (TKI) treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI) non-responder patients, confirming that downregulation selectively occurs in primary CML cells. Conclusions: The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the availability of a specific reagent capable to specifically detect its target in various experimental conditions

    Quantum diffusion with disorder, noise and interaction

    Get PDF
    Disorder, noise and interaction play a crucial role in the transport properties of real systems, but they are typically hard to control and study both theoretically and experimentally, especially in the quantum case. Here we explore a paradigmatic problem, the diffusion of a wavepacket, by employing ultra-cold atoms in a disordered lattice with controlled noise and tunable interaction. The presence of disorder leads to Anderson localization, while both interaction and noise tend to suppress localization and restore transport, although with completely different mechanisms. When only noise or interaction are present we observe a diffusion dynamics that can be explained by existing microscopic models. When noise and interaction are combined, we observe instead a complex anomalous diffusion. By combining experimental measurements with numerical simulations, we show that such anomalous behavior can be modeled with a generalized diffusion equation, in which the noise- and interaction-induced diffusions enter in an additive manner. Our study reveals also a more complex interplay between the two diffusion mechanisms in regimes of strong interaction or narrowband noise.Comment: 11 pages, 10 figure

    Atomic Josephson junction with two bosonic species

    Full text link
    We study an atomic Josephson junction (AJJ) in presence of two interacting Bose-Einstein condensates (BECs) confined in a double well trap. We assume that bosons of different species interact with each other. The macroscopic wave functions of the two components obey to a system of two 3D coupled Gross-Pitaevskii equations (GPE). We write the Lagrangian of the system, and from this we derive a system of coupled ordinary differential equations (ODE), for which the coupled pendula represent the mechanic analogous. These differential equations control the dynamical behavior of the fractional imbalance and of the relative phase of each bosonic component. We perform the stability analysis around the points which preserve the symmetry and get an analytical formula for the oscillation frequency around the stable points. Such a formula could be used as an indirect measure of the inter-species s-wave scattering length. We also study the oscillations of each fractional imbalance around zero and non zero - the macroscopic quantum self-trapping (MQST) - time averaged values. For different values of the inter-species interaction amplitude, we carry out this study both by directly solving the two GPE and by solving the corresponding coupled pendula equations. We show that, under certain conditions, the predictions of these two approaches are in good agreement. Moreover, we calculate the crossover value of the inter-species interaction amplitude which signs the onset of MQST.Comment: Accepted for the publication in J. Phys. B: At. Mol. Opt. Phy

    UGIJAR AND CANJAYAR NEOGENE BASINS (SE SPAIN): AN EXAMPLE OF STRIKE-SLIP BASIN EVOLUTION IN TRANSPRESSIVE REGIME

    Get PDF
    The present study has been carried out in the eastern part of the Alpujarran corridor (Betic Chain), an E-W trending basin, 80 km long, of Neogene-Quaternary age. In particular, the Ugijar and Canjayar basins (respectively named Basin 1 and Basin 2), controlled by an E-W trending left stepping right lateral strike­slip system, associated with NE-SW trending thrust faults, have been investigated. The stratigraphic sequence of the forementioned two basins, which can be up to 2000 m thick, is mainly due to tectonic subsidence and is here interpreted in terms of Sequence Stratigraphy. The age of the whole sequence, dated by means of planktonic foraminifera, is Late Serravallian-Pliocene

    Temporal dynamics of amygdala response to emotion- and action-relevance

    Get PDF
    It has been proposed that the human amygdala may not only encode the emotional value of sensory events, but more generally mediate the appraisal of their relevance for the individual's goals, including relevance for action or task-based needs. However, emotional and non-emotional/action-relevance might drive amygdala activity through distinct neural signals, and the relative timing of both kinds of responses remains undetermined. Here, we recorded intracranial event-related potentials (iERPs) from nine amygdalae of patients undergoing epilepsy surgery, while they performed variants of a Go/NoGo task with faces and abstract shapes, where emotion- and action-relevance were orthogonally manipulated. Our results revealed early amygdala responses to emotion facial expressions starting ~130ms after stimulus-onset. Importantly, the amygdala responded to action-relevance not only with face stimuli but also with abstract shapes (squares), and these relevance effects consistently occurred in later time-windows (starting ~220ms) for both faces and squares. A similar dissociation was observed in gamma activity. Furthermore, whereas emotional responses habituated over time, the action-relevance effect increased during the course of the experiment, suggesting progressive learning based on the task needs. Our results support the hypothesis that the human amygdala mediates a broader relevance appraisal function, with the processing of emotion-relevance preceding temporally that of action-relevance
    • …
    corecore