498 research outputs found

    Antiviral Drug Allergy

    Get PDF
    Antiviral drugs used to treat HIV and hepatitis C are common causes of delayed drug hypersensitivities for which many of the more severe reactions have been recently shown to be immunogenetically mediated such as abacavir hypersensitivity where HLA-B*57:01 is now used routinely as a screening test to exclude patients carrying this allele from abacavir prescription. Most antiviral drug allergies consist of mild to moderate delayed rash without other serious features (e.g. fever, mucosal involvement, blistering rash, organ impairment. In these cases treatment can be continued with careful observation and symptomatic management and the discontinuation rate is low

    The role of interleukin-17 in immune-mediated inflammatory myopathies and possible therapeutic implications

    Get PDF
    The idiopathic inflammatory myopathies are a heterogeneous group of autoimmune muscle disorders with distinct clinical and pathological features and underlying immunopathogenic mechanisms. Traditionally, CD4+ Th1 cells or CD8+ cytotoxic effector T cells and type I/II interferons have been primarily implicated in the pathogenesis of the inflammatory myopathies. The presence of IL-17A producing cells in the inflamed muscle tissue of myositis patients and the results of in vitro studies suggest that IL-17A and the Th17 pathway may also have a key role in these diseases. The contribution of IL-17A to other chronic inflammatory and autoimmune diseases has been well established and clinical trials of IL-17A inhibitors are now at an advanced stage. However the precise role of IL-17A in the various forms of myositis and the potential for therapeutic targeting is currently unknown and warrants further investigation

    Cytokines in immune-mediated inflammatory myopathies: Cellular sources, multiple actions and therapeutic implications

    Get PDF
    The idiopathic inflammatory myopathies are a heterogeneous group of disorders characterised by diffuse muscle weakness and inflammation. A common immunopathogenic mechanism is the cytokine driven infiltration of immune cells into the muscle tissue. Recent studies have dissected further the inflammatory cell types and associated cytokines involved in the immune-mediated myopathies and other chronic inflammatory and autoimmune disorders. In this review we outline the current knowledge of cytokine expression profiles and cellular sources in the major forms of inflammatory myopathy and detail the known mechanistic functions of these cytokines in the context of inflammatory myositis. Furthermore, we discuss how the application of this knowledge may lead to new therapeutic strategies for the treatment of the inflammatory myopathies, in particular for cases resistant to conventional forms of therapy

    Topological Structure of the QCD Vacuum Revealed by Overlap Fermions

    Full text link
    Overlap fermions preserve a remnant of chiral symmetry on the lattice. They are a powerful tool to investigate the topological structure of the vacuum of Yang-Mills theory and full QCD. Recent results concerning the localization of topological charge and the localization and local chirality of the overlap eigenmodes are reported. The charge distribution is radically different, if a spectral cut-off for the Dirac eigenmodes is applied. The density q(x) is changing from the scale-a charge density (with full lattice resolution) to the ultraviolet filtered charge density. The scale-a density, computed on the Linux cluster of LRZ, has a singular, sign-coherent global structure of co-dimension 1 first described by the Kentucky group. We stress, however, the cluster properties of the UV filtered topological density resembling the instanton picture. The spectral cut-off can be mapped to a bosonic smearing procedure. The UV filtered field strength reveals a high degree of (anti)selfduality at "hot spots" of the action. The fermionic eigenmodes show a high degree of local chirality. The lowest modes are seen to be localized in low-dimensional space-time regions.Comment: 13 pages, 11 figures, accepted to appear in the Proceedings of "HLRB, KONWIHR and Linux-Cluster: Review, Results and Future Projects Workshop", Leibniz Rechenzentrum Munich, December 200

    Abacavir-Reactive memory T Cells are present in drug naïve individuals

    Get PDF
    Background Fifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population. Methods To determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling. Results Abacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells. Conclusions We propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3β) a key regulator of glycolysis. Pharmacological inhibition of GSK3β results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3β inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarkerdriven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient–derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.Stephan B. Dreyer ... Karin S. Kassahn ... et al

    Does congenital deafness affect the structural and functional architecture of primary visual cortex?

    Get PDF
    Deafness results in greater reliance on the remaining senses. It is unknown whether the cortical architecture of the intact senses is optimized to compensate for lost input. Here we performed widefield population receptive field (pRF) mapping of primary visual cortex (V1) with functional magnetic resonance imaging (fMRI) in hearing and congenitally deaf participants, all of whom had learnt sign language after the age of 10 years. We found larger pRFs encoding the peripheral visual field of deaf compared to hearing participants. This was likely driven by larger facilitatory center zones of the pRF profile concentrated in the near and far periphery in the deaf group. pRF density was comparable between groups, indicating pRFs overlapped more in the deaf group. This could suggest that a coarse coding strategy underlies enhanced peripheral visual skills in deaf people. Cortical thickness was also decreased in V1 in the deaf group. These findings suggest deafness causes structural and functional plasticity at the earliest stages of visual cortex

    Photochemically produced SO2 in the atmosphere of WASP-39b

    Get PDF
    S.-M.T. is supported by the European Research Council advanced grant EXOCONDENSE (no. 740963; principal investigator: R. T. Pierrehumbert). E.K.H.L. is supported by the SNSF Ambizione Fellowship grant (no. 193448). X.Z. is supported by NASA Exoplanet Research grant 80NSSC22K0236. O.V. acknowledges funding from the ANR project ‘EXACT’ (ANR-21-CE49-0008-01), from the Centre National d’Études Spatiales (CNES) and from the CNRS/INSU Programme National de Planétologie (PNP). L.D. acknowledges support from the European Union H2020-MSCA-ITN-2109 under grant no. 860470 (CHAMELEON) and the KU Leuven IDN/19/028 grant Escher. This work benefited from the 2022 Exoplanet Summer Program at the Other Worlds Laboratory (OWL) at the University of California, Santa Cruz, a programme financed by the Heising-Simons Foundation. T.D. is an LSSTC Catalyst Fellow. J.K. is an Imperial College Research Fellow. B.V.R. is a 51 Pegasi b Fellow. L.W. is an NHFP Sagan Fellow. A.D.F. is an NSF Graduate Research Fellow.Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Publisher PDFPeer reviewe
    corecore