57 research outputs found

    Clustering in Hilbert space of a quantum optimization problem

    Full text link
    The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state subspace of a certain quantum optimization problem. This involves extending the notion of clustering to Hilbert space, where the classical Hamming distance is not immediately useful. Quantum clusters correspond to macroscopically distinct subspaces of the full quantum ground state space which grow with the system size. We explicitly demonstrate that such clusters arise in the solution space of random quantum satisfiability (3-QSAT) at its satisfiability transition. We estimate both the number of these clusters and their internal entropy. The former are given by the number of hardcore dimer coverings of the core of the interaction graph, while the latter is related to the underconstrained degrees of freedom not touched by the dimers. We additionally provide new numerical evidence suggesting that the 3-QSAT satisfiability transition may coincide with the product satisfiability transition, which would imply the absence of an intermediate entangled satisfiable phase.Comment: 11 pages, 6 figure

    Emergent Fine Structure Constant of Quantum Spin Ice Is Large

    Get PDF
    Condensed-matter systems provide alternative "vacua" exhibiting emergent low-energy properties drastically different from those of the standard model. A case in point is the emergent quantum electrodynamics (QED) in the fractionalized topological magnet known as quantum spin ice, whose magnetic monopoles set it apart from the familiar QED of the world we live in. Here, we show that the two greatly differ in their fine structure constant alpha, which parametrizes how strongly matter couples to light: alpha(QSI) is more than an order of magnitude greater than alpha(QED) approximate to 1/137. Furthermore, alpha(QSI), the emergent speed of light, and all other parameters of the emergent QED, are tunable by engineering the microscopic Hamiltonian. We find that alpha(QSI) can be tuned all the way from zero up to what is believed to be the strongest possible coupling beyond which QED confines. In view of the small size of its constrained Hilbert space, this marks out quantum spin ice as an ideal platform for studying exotic quantum field theories and a target for quantum simulation. The large alpha(QSI) implies that experiments probing candidate condensed-matter realizations of quantum spin ice should expect to observe phenomena arising due to strong interactions

    Searching for dark matter with plasma haloscopes

    Get PDF
    We summarize the recent progress of the Axion Longitudinal Plasma Haloscope (ALPHA) Consortium, a new experimental collaboration to build a plasma haloscope to search for axions and dark photons. The plasma haloscope is a novel method for the detection of the resonant conversion of light dark matter to photons. ALPHA will be sensitive to QCD axions over almost a decade of parameter space, potentially discovering dark matter and resolving the strong CP problem. Unlike traditional cavity haloscopes, which are generally limited in volume by the Compton wavelength of the dark matter, plasma haloscopes use a wire metamaterial to create a tuneable artificial plasma frequency, decoupling the wavelength of light from the Compton wavelength and allowing for much stronger signals. We develop the theoretical foundations of plasma haloscopes and discuss recent experimental progress. Finally, we outline a baseline design for ALPHA and show that a full-scale experiment could discover QCD axions over almost a decade of parameter space

    Searching For Dark Matter with Plasma Haloscopes

    Full text link
    We summarise the recent progress of the Axion Longitudinal Plasma HAloscope (ALPHA) Consortium, a new experimental collaboration to build a plasma haloscope to search for axions and dark photons. The plasma haloscope is a novel method for the detection of the resonant conversion of light dark matter to photons. ALPHA will be sensitive to QCD axions over almost a decade of parameter space, potentially discovering dark matter and resolving the Strong CP problem. Unlike traditional cavity haloscopes, which are generally limited in volume by the Compton wavelength of the dark matter, plasma haloscopes use a wire metamaterial to create a tuneable artificial plasma frequency, decoupling the wavelength of light from the Compton wavelength and allowing for much stronger signals. We develop the theoretical foundations of plasma haloscopes and discuss recent experimental progress. Finally, we outline a baseline design for ALPHA and show that a full-scale experiment could discover QCD axions over almost a decade of parameter space.Comment: Endorsers: Jens Dilling, Michael Febbraro, Stefan Knirck, and Claire Marvinney. 26 pages, 17 figures, version accepted in Physical Review

    T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice

    Get PDF
    Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-Ξ² between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-Ξ² protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-Ξ² impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-Ξ² signalling is a potential target for immunotherapy or drug design

    Proteome-Wide Analysis of Single-Nucleotide Variations in the N-Glycosylation Sequon of Human Genes

    Get PDF
    N-linked glycosylation is one of the most frequent post-translational modifications of proteins with a profound impact on their biological function. Besides other functions, N-linked glycosylation assists in protein folding, determines protein orientation at the cell surface, or protects proteins from proteases. The N-linked glycans attach to asparagines in the sequence context Asn-X-Ser/Thr, where X is any amino acid except proline. Any variation (e.g. non-synonymous single nucleotide polymorphism or mutation) that abolishes the N-glycosylation sequence motif will lead to the loss of a glycosylation site. On the other hand, variations causing a substitution that creates a new N-glycosylation sequence motif can result in the gain of glycosylation. Although the general importance of glycosylation is well known and acknowledged, the effect of variation on the actual glycoproteome of an organism is still mostly unknown. In this study, we focus on a comprehensive analysis of non-synonymous single nucleotide variations (nsSNV) that lead to either loss or gain of the N-glycosylation motif. We find that 1091 proteins have modified N-glycosylation sequons due to nsSNVs in the genome. Based on analysis of proteins that have a solved 3D structure at the site of variation, we find that 48% of the variations that lead to changes in glycosylation sites occur at the loop and bend regions of the proteins. Pathway and function enrichment analysis show that a significant number of proteins that gained or lost the glycosylation motif are involved in kinase activity, immune response, and blood coagulation. A structure-function analysis of a blood coagulation protein, antithrombin III and a protease, cathepsin D, showcases how a comprehensive study followed by structural analysis can help better understand the functional impact of the nsSNVs

    Toxoplasma gondii virulence is predictable in cultured human cells.36523

    No full text
    Toxoplasma gondii virulence is predictable in cultured human cells.</p

    Verbesserung der Sicherheit von EHB-Aufhaengeankern, insbesondere bei Schwerlasttransporten mit leistungsstaerkeren Dieselkatzen

    No full text
    According to the present state of knowledge, the angle of inclination of suspension bolts for overhead monorails must not exceed 10 degrees. As practical requirements may be different, investigations were made to optimise suspension bolts for heavy load transports and for angles of power induction of up to 30 degrees. This involved investigations of materials, geometry, and production processes. The results were to provide a basis for the development and construction of a new suspension bolt for overhead monorails which meets the above specifications.SIGLEAvailable from TIB Hannover: RR 1344(143) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekMinisterium fuer Wirtschaft und Mittelstand, Technologie und Verkehr des Landes Nordrhein-Westfalen, Duesseldorf (Germany)DEGerman

    Statistics of Fractionalized Excitations through Threshold Spectroscopy

    No full text
    We show that neutral anyonic excitations have a signature in spectroscopic measurements of materials: The low-energy onset of spectral functions near the threshold follows universal power laws with an exponent that depends only on the statistics of the anyons. This provides a route, using experimental techniques such as neutron scattering and tunneling spectroscopy, for detecting anyonic statistics in topologically ordered states such as gapped quantum spin liquids and hypothesized fractional Chern insulators. Our calculations also explain some recent theoretical results in spin systems
    • …
    corecore