The solution space of many classical optimization problems breaks up into
clusters which are extensively distant from one another in the Hamming metric.
Here, we show that an analogous quantum clustering phenomenon takes place in
the ground state subspace of a certain quantum optimization problem. This
involves extending the notion of clustering to Hilbert space, where the
classical Hamming distance is not immediately useful. Quantum clusters
correspond to macroscopically distinct subspaces of the full quantum ground
state space which grow with the system size. We explicitly demonstrate that
such clusters arise in the solution space of random quantum satisfiability
(3-QSAT) at its satisfiability transition. We estimate both the number of these
clusters and their internal entropy. The former are given by the number of
hardcore dimer coverings of the core of the interaction graph, while the latter
is related to the underconstrained degrees of freedom not touched by the
dimers. We additionally provide new numerical evidence suggesting that the
3-QSAT satisfiability transition may coincide with the product satisfiability
transition, which would imply the absence of an intermediate entangled
satisfiable phase.Comment: 11 pages, 6 figure