12,761 research outputs found

    DNA Torsional Solitons in Presence of localized Inhomogeneities

    Full text link
    In the present paper we investigate the influence of inhomogeneities in the dynamics and stability of DNA open states, modeled as propagating solitons in the spirit of a Generalized Yakushevish Model. It is a direct consecuence of our model that there exists a critical distance between the soliton's center of mass and the inhomogeneity at which the interaction between them can change the stability of the open state.Furtherly from this results was derived a renormalized potential funtion.Comment: RevTex, 13 pages, 3 figures, final versio

    Optimization of soliton ratchets in inhomogeneous sine-Gordon systems

    Get PDF
    Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential V(x)V(x), which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions xix_{i}. A collective coordinate approach shows that the positions, heights and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential UoptU_{opt} that yields a maximal average soliton velocity. UoptU_{opt} essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variables theory are confirmed by full simulations for the inhomogeneous sine-Gordon system

    A list of all integrable 2D homogeneous polynomial potentials with a polynomial integral of order at most 4 in the momenta

    Full text link
    We searched integrable 2D homogeneous polynomial potential with a polynomial first integral by using the so-called direct method of searching for first integrals. We proved that there exist no polynomial first integrals which are genuinely cubic or quartic in the momenta if the degree of homogeneous polynomial potentials is greater than 4.Comment: 22 pages, no figures, to appear in J. Phys. A: Math. Ge

    Survival of Potentially Pathogenic Human-Associated Bacteria in the Rhizosphere of Hydroponically Grown Wheat

    Get PDF
    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition

    Estrogen treatment decreases matrix metalloproteinase (MMP)-9 in autoimmune demyelinating disease through estrogen receptor alpha (ERalpha).

    Get PDF
    Matrix metalloproteinases (MMPs) have a crucial function in migration of inflammatory cells into the central nervous system (CNS). Levels of MMP-9 are elevated in multiple sclerosis (MS) and predict the occurrence of new active lesions on magnetic resonance imaging (MRI). This translational study aims to determine whether in vivo treatment with the pregnancy hormone estriol affects MMP-9 levels from immune cells in patients with MS and mice with experimental autoimmune encephalomyelitis (EAE). Peripheral blood mononuclear cells (PBMCs) collected from three female MS patients treated with estriol and splenocytes from EAE mice treated with estriol, estrogen receptor (ER) alpha ligand, ERbeta ligand or vehicle were stimulated ex vivo and analyzed for levels of MMP-9. Markers of CNS infiltration were assessed using MRI in patients and immunohistochemistry in mice. Supernatants from PBMCs obtained during estriol treatment in female MS patients showed significantly decreased MMP-9 compared with pretreatment. Decreases in MMP-9 coincided with a decrease in enhancing lesion volume on MRI. Estriol treatment of mice with EAE reduced MMP-9 in supernatants from autoantigen-stimulated splenocytes, coinciding with decreased CNS infiltration by T cells and monocytes. Experiments with selective ER ligands showed that this effect was mediated through ERalpha. In conclusion, estriol acting through ERalpha to reduce MMP-9 from immune cells is one mechanism potentially underlying the estriol-mediated reduction in enhancing lesions in MS and inflammatory lesions in EAE

    Switchable collective pinning of flux quanta using magnetic vortex arrays

    Full text link
    We constructed a superconducting/ferromagnetic hybrid system in which the ordering of the pinning potential landscape for flux quanta can be manipulated. Flux pinning is induced by an array of magnetic nanodots in the magnetic vortex state, and controlled by the magnetic history. This allows switching on and off the collective pinning of the flux-lattice. In addition, we observed field-induced superconductivity that originates from the annihilation of flux quanta induced by the stray fields from the magnetic vortices.Comment: PDF file 18 pages including 5 figures, accepted for publication in Phys. Rev.

    Microstructural and morphological properties of homoepitaxial (001)ZnTe layers investigated by x-ray diffuse scattering

    Full text link
    The microstructural and morphological properties of homoepitaxial (001)ZnTe layers are investigated by x-ray diffuse scattering. High resolution reciprocal space maps recorded close to the ZnTe (004) Bragg peak show different diffuse scattering features. One kind of cross-shaped diffuse scattering streaks along directions can be attributed to stacking faults within the epilayers. Another kind of cross-shaped streaks inclined at an angle of about 80deg with respect to the in-plane direction arises from the morphology of the epilayers. (abridged version

    Flow Path Resistance in Heterogeneous Porous Media Recast into a Graph-Theory Problem

    Get PDF
    Acknowledgment is made to the U.S. NSF (EAR-1847689) and the Donors of the American Chemical Society Petroleum Research Fund (59864-DNI9) for partial support of this research. The authors also thank Drs Matthias Willmann, Jefrey Hyman and Markus Holzner for assistance with numerical simulations and insightful discussionsPeer reviewedPublisher PD
    corecore