87 research outputs found

    Filtration and transport of heavy metals in graphene oxide enabled sand columns

    Get PDF
    A fixed-bed sand column with graphene oxide (GO) layer was used to remove heavy metals (Cu(II) and Pb(II)) from an aqueous solution injected under steady flow. Due to the time constrained kinetic process of heavy metal sorption to GO, removal efficiency was affected by the injection flow rate. When injection flow rate changed from 1 to 5 mL min−1, the removal efficiency of the two metals decreased from 15.3% to 10.3% and from 26.7% to 19.0% for Cu(II) and Pb(II), respectively. Provided a fixed concentration of heavy metals in the injected flow, an increase in GO in column from 10 to 30 mg resulted in an sharp increase in the removal efficiency of Pb(II) from 26.7% to 40.5%. When Cu(II) and Pb(II) were applied simultaneously, the removal efficiency of the two metals was lower than when applied by individually. GO-sand column performance was much better for the removal of Pb(II) than for Cu(II) in each corresponding treatment. When breakthrough curve (BTC) data were simulated by the convection-dispersion-reaction (CDER) model, the fittings for Cu in every treatment were better than that of Pb in corresponding treatment. Considering the small amount of GO used to enable the sand columns that resulted in a great increase in k value, compared to the GO-free sand columns, the authors propose GO as an effective adsorption media in filters and reactive barriers to remove Pb(II) from flowing water

    Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media

    Get PDF
    This work investigated the effect of different surface modification methods, including oxidization, surfactant coating, and humic acid coating, on single-walled carbon nanotube (SWNT) stability and their mobility in granular porous media under various conditions. Characterization and stability studies demonstrated that the three surface modification methods were all effective in solubilizing and stabilizing the SWNTs in aqueous solutions. Packed sand column experiments showed that although the three surface medication methods showed different effect on the retention and transport of SWNTs in the columns, all the modified SWNTs were highly mobile. Compared with the other two surface modification methods, the humic acid coating method introduced the highest mobility to the SWNTs. While reductions in moisture content in the porous media could promote the retention of the surface modified SWNTs in some sand columns, results from bubble column experiment suggested that only oxidized SWNTs were retention in unsaturated porous media through attachment on air–water interfaces. Other mechanisms such as grain surface attachment and thin-water film straining could also be responsible for the retention of the SWNTs in unsaturated porous media. An advection–dispersion model was successfully applied to simulate the experimental data of surface modified SWNT retention and transport in porous media

    Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns

    Get PDF
    Sulfamethoxazole (SMX) and sulfapyridine (SPY), two representative sulfonamide antibiotics, have gained increasing attention because of the ecological risks these substances pose to plants, animals, and humans. This work systematically investigated the removal of SMX and SPY by carbon nanotubes (CNTs) in fixed-bed columns under a broad range of conditions including: CNT incorporation method, solution pH, bed depth, adsorbent dosage, adsorbate initial concentration, and flow rate. Fixed-bed experiments showed that pH is a key factor that affects the adsorption capacity of antibiotics to CNTs. The Bed Depth Service Time model describes well the relationship between service time and bed depth and can be used to design appropriate column parameters. During fixed-bed regeneration, small amounts of SMX (3%) and SPY (9%) were irreversibly bonded to the CNT/sand porous media, thus reducing the column capacity for subsequent reuse from 67.9 to 50.4 mg g−1 for SMX and from 91.9 to 72.9 mg g−1 for SPY. The reduced column capacity resulted from the decrease in available adsorption sites and resulting repulsion (i.e., blocking) of incoming antibiotics from those previously adsorbed. Findings from this study demonstrate that fixed-bed columns packed with CNTs can be efficiently used and regenerated to remove antibiotics from water

    Deposition and transport of graphene oxide in saturated and unsaturated porous media

    Get PDF
    In this work, sand and bubble column experiments were conducted to explore the deposition mechanisms of graphene oxide (GO) particles in porous media with various combinations of moisture content and ionic strength. Sand column experimental results indicated that retention and transport of GO in porous media were strongly dependent on solution ionic strength. Particularly, GO showed high mobility under low ionic strength conditions in both saturated and unsaturated porous media. Increasing ionic strength dramatically increased the retention of GO particles in porous media, mainly through secondary-minimum deposition as indicated in the XDLVO interaction energy profiles. Recovery rates of GO in unsaturated sand columns were lower than that in saturated columns under the same ionic strength conditions, suggesting moisture content also played an important role in the retention of GO in porous media. Findings from the bubble column experiments showed that the GO did not attach to the air–water interface, which is consistent with the XDLVO predictions. Additional retention mechanisms, such as film straining, thus could be responsible to the reduced mobility of GO in unsaturated porous media. The experimental data of GO transport through saturated and unsaturated porous media could be accurately simulated by an advection–dispersion-reaction model

    Reverse engineering of biochar

    Get PDF
    This study underpins quantitative relationships that account for the combined effects that starting biomass and peak pyrolysis temperature have on physico-chemical properties of biochar. Meta-data was assembled from published data of diverse biochar samples (n = 102) to (i) obtain networks of intercorrelated properties and (ii) derive models that predict biochar properties. Assembled correlation networks provide a qualitative overview of the combinations of biochar properties likely to occur in a sample. Generalized Linear Models are constructed to account for situations of varying complexity, including: dependence of biochar properties on single or multiple predictor variables, where dependence on multiple variables can have additive and/or interactive effects; non-linear relation between the response and predictors; and non-Gaussian data distributions. The web-tool Biochar Engineering implements the derived models to maximize their utility and distribution. Provided examples illustrate the practical use of the networks, models and web-tool to engineer biochars with prescribed properties desirable for hypothetical scenarios

    Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns

    Get PDF
    Knowledge of the fate and transport of functionalized carbon nanotubes (CNTs) in porous media is crucial to understand their environmental impacts. In this study, laboratory column and modeling experiments were conducted to mechanistically compare the retention and transport of two types of functionalized CNTs (i.e., single-walled nanotubes and multi-walled nanotubes) in acid-cleaned, baked, and natural sand under unfavorable conditions. The CNTs were highly mobile in the acid-cleaned sand columns but showed little transport in the both natural and baked sand columns. In addition, the retention of the CNTs in the both baked and natural sand was strong and almost irreversible even after reverse, high-velocity, or surfactant flow flushing. Both experimental and modeling results showed that pH is one of the factors dominating CNT retention and transport in natural and baked sand. Retention of the functionalized CNTs in the natural and baked sand columns reduced dramatically when the system pH increased. Our results suggest that the retention and transport of the functionalized CNTs in natural sand porous media were mainly controlled by strong surface deposition through the electrostatic and/or hydrogen-bonding attractions between surface function groups of the CNTs and metal oxyhydroxide impurities on the sand surfaces

    Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

    Get PDF
    Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data

    Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow

    Get PDF
    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors

    Methods of using carbon nanotubes as filter media to remove aqueous heavy metals

    Get PDF
    Although carbon nanotubes (CNTs) are well known to have a strong affinity to various heavy metals in aqueous solution, little research has been dedicated to exploit their use in fixed-bed water treatment systems (e.g., trickling filters). In this work, batch sorption and fixed-bed experiments were conducted to examine the ability of functionalized multi-walled CNTs as filter media to remove two heavy metal ions (Pb2+ and Cu2+) from infiltrating water. Batch sorption experiments confirmed the strong sorption affinity of the CNTs for Pb2+ and Cu2+ in both single and dual metal solution systems. In addition, sonication-promoted dispersion of the CNT particles enhanced their heavy metal sorption capacity by 23.9–32.2%. For column experiments, laboratory-scale fixed-bed columns were packed with CNTs and natural quartz sand by three different packing: layered, mixed, and deposited. While all the three packing methods enhanced the fixed-bed filtering efficiency of Pb2+ and Cu2+ from single and dual metal systems, the CNT-deposited packing method was superior. Although the amount of the CNTs added into the fixed-bed columns was only 0.006% (w/w) of the sand, they significantly improved the fixed-bed’s filtering efficiency of Pb2+ and Cu2+ by 55–75% and 31–57%, respectively. Findings from this study demonstrate that functionalized multi-walled CNTs, together with natural sand, can be used to effectively and safely remove heavy metals from water

    Effect of hydrofracking fluid on colloid transport in the unsaturated zone

    Get PDF
    Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32–36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants
    corecore