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Abstract 

A fixed-bed sand column with graphene oxide (GO) layer was used to remove heavy metals 

(Cu(II) and Pb(II)) from an aqueous solution injected under steady flow. Due to the time 

constrained kinetic process of heavy metal sorption to GO, removal efficiency was affected by 

the injection flow rate. When injection flow rate changed from 1 to 5 mL·min
-1

, the removal 

efficiency of the two metals decreased from 15.3% to 10.3% and from 26.7% to 19.0% for Cu(II) 

and Pb(II), respectively. Provided a fixed concentration of heavy metals in the injected flow, an 

increase in GO in column from 10 to 30 mg resulted in an sharp increase in the removal 

efficiency of Pb(II) from 26.7% to 40.5%. When Cu(II) and Pb(II) were applied simultaneously, 

the removal efficiency of the two metals was lower than when applied by individually. GO-sand 

column performance was much better for the removal of Pb(II) than for Cu(II) in each 

corresponding treatment. When breakthrough curve (BTC) data were simulated by the 

convection-dispersion-reaction (CDER) model, the fittings for Cu in every treatment were better 

than that of Pb in corresponding treatment. Considering the small amount of GO used to enable 

the sand columns that resulted in a great increase in k value, compared to the GO-free sand 

columns, the authors propose GO as an effective adsorption media in filters and reactive barriers 

to remove Pb(II) from flowing water. 
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1. Introduction 

Lack of clean water resources has become a highly pervasive worldwide problem due to 

rapid urbanization and industrialization [1]. A growing number of contaminants have direct 

entryways into freshwater resources, causing numerous environmental and health problems. 

There is therefore a need to find innovative and cost-effectively solutions to water purification 

and wastewater reutilization with new materials and techniques [1]. As a derivative of graphene 

nanosheets, graphene oxide (GO) has become one of the most intensively studied engineered 

nanomaterials in the last decade due to its tremendous potential in environmental applications; 

particularly with respect to water purification [2-5]. It has been reported in the literature that GO 

and GO-based sorbents have strong sorption ability to various water contaminants, including 

heavy metals and organic pollutants [6-9]. 

GO has a sheet structure with an abundance of oxygen atoms on the graphitic backbone in 

the form of epoxy, hydroxyl, and carboxyl functional groups [10]. These functional groups are 

the essential chemical skeletons for an ideal adsorbent of heavy metals because of their strong 

affinity to cations, especially multivalent metal ions [11-13], through both electrostatic and 

coordinate approaches [14].  

Laboratory batch sorption experiments have been used to determine the sorption ability of 

GO to a variety of heavy metal ions, including Pb(II), Cu(II), Cd(II), Co(II), Zn(II), Eu(III), and 

Th(IV) in aqueous solutions [15-18]. Most of these studies were focused on exploring the 
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sorption characteristics and mechanisms of GO to heavy metals in single sorbate solution 

systems. Only few studies have examined the competitive sorption of different heavy metals on 

GO in aqueous solutions [16]. Findings from the batch sorption studies have demonstrated the 

great potential of using GO as an effective sorbent to remove heavy metals from water. Because 

almost all batch sorption experiments are conducted under ideal sorption conditions (e.g., full 

contact and sufficient reaction time), fix-bed adsorption experiments are often used to evaluate 

the sorbents as packed media in filter systems [19-21]. In the literature, however, only few 

studies have investigated the filtration of heavy metals by GO enabled fix-bed columns [3]. 

In general, engineered nanomaterials, including GO, may not be applied directly as filter 

media because of their small size. To take advantage of the great sorption ability of engineered 

nanomaterials, several methods have been developed to combine them with other sorbents such 

as sand for improved filter performance [3, 19, 20, 22-24]. For example, Gao et al. [3] found that 

GO can be used to coat sand surfaces and the GO-enabled sand retains at least 5-fold higher 

concentration of heavy metal and organic dye than pure sand. Recently, Tian et al. [19, 20] 

evaluated the effect of different packing methods of carbon nanotubes (CNTs) in sand columns 

on their removal of heavy metals and antibiotics from aqueous solutions and found that CNT 

packed together with natural sand can effectively and safely remove metallic and pharmaceutical 

contaminants from water. Furthermore, their results also suggested that functionalized carbon 

nanomaterials may be applied as a layer within natural sand columns to filter contaminants from 
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water. 

The overarching objective of this work was to determine the removal efficiency of 

GO-enabled sand filters for aqueous heavy metal cations. GO-enabling consisted of thin layering 

of GO material in a quartz sand bed to create the fixed-column. The filtration and transport of 

Pb(II) and Cu(II) in GO-enabled and pure sand columns (the control) were investigated under 

various conditions. The specific objectives were as follows: 1) determine the effect of GO on the 

removal of two types of heavy metals in the fix-bed sand columns under single and dual sorbate 

conditions; 2) determine the effect of flow rate and GO loading on heavy metal removal; and 3) 

model the filtration and transport of heavy metals in the fix-bed columns. 

 

2. Materials and methods 

2.1. Materials 

GO was obtained from ACS Material (Medford, MA) and used as received. According to the 

manufacturer, it was prepared by the modified hummer’s method. The physical dimensions of 

GO were determined previously, where an average thickness and average square root of the area 

was reported as 0.92 ± 0.13 nm and 582 ± 111.2 nm, respectively [25]. 

Quartz sand (Standard Sand & Silica Co.) of grain size 0.5–0.6 mm was washed sequentially 

with tap water, 10% nitric acid (v:v), and deionized (DI) water, followed by oven drying at 70ºC 

following the procedure of Tian et al. [26] to remove loose impurities and metal oxides. 
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Copper nitrate and lead nitrate were used to prepare the heavy metal stock solutions. 

Individual metal solutions were prepared at concentrations of 10 mg L
-1

 of Cu
2+

 or Pb
2+

. In 

addition, a dual metal solution containing 10 mg L
-1

 of Cu
2+

 and Pb
2+

, each, was also prepared. 

Inductively coupled plasma optical emission spectrometry (ICP-OES, Optima 2100 DV, 

PerkinElmer Inc., Waltham, MA) was used to determine the metal concentration in the solutions. 

Nitric acid and sodium hydroxide solutions were used to adjust the pH of the metal solutions to 

5.6. 

 

2.2. Fixed-bed column experiment 

Fixed-bed column experiments were used to quantitatively evaluate the removal of heavy 

metals dissolved in water. GO was packed as a thin layer in the middle of the fixed-bed 

contained in an acrylic column (1.5 cm inside diameter and 5 cm height) holding approximately 

16.5 g of quartz sand (Table 1). Packing of the GO-enable fixed-bed column entailed filling half 

of column with sand by wet-packing into the acrylic column, carefully layering 10 or 30 mg of 

GO on top of the packed sand, and finally wet-packing the rest of the sand into the column. 

Membranes with 50 lm pores (Spectra/Mesh, Spectrum Laboratories, Inc.) were used at the 

column inlet and outlet to distribute the flow and seal the column. Sand columns packed without 

GO were also prepared to be used as controls. Because only small amount of GO (0.06% w/w or 

0.18%w/w of GO/sand) were used in the fixed-bed columns, the bed porosity of all the columns 
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was assumed to remain at 0.45.  

After packing, the columns were first flushed with DI water (pH 5.6, adjusted with nitric acid) 

for 1 h to remove potential impurities. They were then subjected to pulses of single or dual metal 

solutions and the removal efficiency was determined through mass balance calculations. Figure 1 

illustrates the setup of the fix-bed column experiment. The BTC experiments consisted of two 

injection stages. At stage one, the single (Cu(II) or Pb(II)) or dual (Cu(II) and Pb(II)) metal 

solutions were injected into the bottom of the column at a steady flow rate (1 mL·min
-1 

or 5 

mL·min
-1

) for 28 or 140 min. At stage two, the influent was switched to metal-free DI water for 

an additional 2 h to elute residual heavy metals in the pore water. Effluent samples were 

collected discretely with a fraction collector and the metal concentrations were measured with 

the ICP-OES. All treatments were tested in duplicate, and average values were reported.  

 

2.3. Model heavy metal transport in the columns 

Filtration and transport of the heavy metals in the GO-enabled and pure sand columns were 

simulated by the convection-dispersion-reaction (CDER) model. The governing equation can be 

written as [27]: 
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where R is the retardation factor (dimensionless), C is the sorbate concentration in pore water 
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(mg L
-1

) , t is time (min), ρb is the medium bulk density (g L
-1

), θ is the dimensionless volumetric 

moisture content, q is the concentration of heavy metal adsorbed onto the column (as sand or 

sand+GO combination) (mg g
-1

), z is the distance traveled in the direction of flow (cm), D is the 

dispersion coefficient (cm
2
 min

-1
), v is the average linear pore-water velocity (cm min

-1
), and k is 

the first-order removal rate constant (min
-1

). Equations (1) and (2) were solved numerically using 

the finite difference method with a zero initial concentration, a pulse-input and a 

zero-concentration-gradient boundary conditions for the whole column. The 

Levenberg-Marquardt algorithm was used to estimate the value of the model parameters by 

minimizing the sum-of-the-squared differences between model-calculated and measured effluent 

concentrations over multiple calculation iterations. 

 

3. Results and discussion  

Removal of dissolved metals from water was evaluated through analysis of experimental 

effluent breakthrough concentration. BTCs in Figures 2-5 were constructed as plots of the 

application time of liquid versus the normalized concentration (C/C0) of the injected metal in the 

effluent. 

 

3.1. Effect of flow rate  

Breakthrough curves (BTCs) and removal efficiency values for single metal pulse injections 
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were compared for fixed-bed columns with and without GO at two different effluent flow rates, 

as illustrated in Table 1, and Figures 2 and 3, which showed that the addition of GO enhanced 

the removal of heavy metals in the columns. Peak effluent concentrations for Cu (II) and Pb (II) 

of the single injection to columns enabled with 10 mg of GO were measured at 0.94 and 0.86 for 

the 1mL·min
-1

 flow rate experiments and 0.95 and 0.90 for the 5mL·min
-1 

flow rate experiments, 

respectively. The authors expected that an increase in contact time between the metal solution 

and the GO adsorbent at the lower flow rate would enhance removal efficiency of the fixed-bed 

columns. As presented in Table 1, the removal efficiency of the two metals decreased from 15.3% 

to 10.3% and from to 26.7% to 19.0% for the single injection of Cu(II) and Pb(II), respectively, 

as the injection flow rate was raised from 1 to 5 mL min
-1

. Presumably this trend is due to the 

reduced contact time between dissolved metals and the GO layer. Furthermore, the observed 

removal efficiencies suggest that the association of Pb to GO is greater than that of Cu (Table 1), 

an observation that is in agreement with previous reports that the affinities of GO for the metal 

ions follow the order of Pb(II) > Cu(II) >> Cd(II) > Zn(II) in batch experiment [16]. 

 

3.2. Effect of GO loading 

To test the effect of GO dosing on removal efficiency, experiments in fixed-bed columns 

enabled with 30mg of GO were also conducted at a flow rate of 1mL min
-1

 (Figures 4). As 

shown in Table 1, the final values of C/C0 for Cu (II) at the end of metal solution injection were 
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1, 0.94 and 0.89 for 0, 10 and 30 mg of GO in the fixed-bed, respectively. Similarly, final values 

for Pb (II) were 1, 0.86 and 0.76 for the same GO gradation. Such trends indicate a higher 

saturation capacity of the column with increasing GO amount for both types of metal. Removal 

efficiency for Cu(II) increased from 4.2%, to 15.3% to 19.6% with increasing amount of GO in 

the column from 0 to 10 to 30 mg. For Pb(II), this increased from 11.3% to 26.7% to 40.5%. 

From the removal efficiency trends, it is evident that the removal of Pb is affected more 

significantly than that of Cu(II) with the same amount of GO used to enable the fixed-bed. 

 

3.3. Dual metal removal 

Dual metal ion solutions were used to test for sorption site competition in 10 mg GO-enabled 

fixed-bed columns at a flow rate of 1 mL min
-1

. The peak effluent C/C0 values at the end of the 

metal solution injection for Cu (II) and Pb(II) approached 0.94 and 0.92, respectively. Removal 

efficiency values in the dual-metal solution injection were consistently lower (11.8% and 23.3% 

for Cu(II) and Pb(II), respectively) than for the single-metal treatments (15.3% and 26.7% for 

Cu(II) and Pb(II), respectively), including the GO-free controls (Table 1). Similar to the trends 

observed in the single-metal treatments, Pb(II) demonstrated to have higher removal efficiency 

by mas than Cu(II) by GO in the dual-metal experiments. 

 

3.4. Model results 
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The model was applied to the BTCs with the known parameters (i.e., ρb = 1630 g L
-1

, θ = 

0.45, D = 0.062 cm
2
 min

-1
, and v = 1.26/6.28 cm min

-1
) and the best-fit R and k values (Table 1). 

The Cu(II) BTCs in all treatments were well described by the model (R
2 

≥ 0.90), while Pb(II) 

BTCs were fitted less well (R
2 

≥ 0.70). The authors speculate that this discrepancy in model 

fitting between the two metals may be due to the greater affinity of GO to Pb(II) than for Cu(II), 

as well as the improper assumption of an homogeneous bed medium for the actual layer of GO 

sorbent in the column. Moreover, the goodness of fit decreases with increasing amount of GO to 

a greater extent for Pb(II) than for Cu(II).  

Estimated values for the first-order removal rate, k, were consistently greater for Pb(II) than 

Cu(II) in comparable treatments, suggesting that the removal of Pb(II) under ‘clean-bed’ 

conditions was faster than the removal of Cu(II). Although the increase in flow rate resulted in 

lower metal removal, the estimated k values for both metals tended to increase because flow 

velocity strongly affect the adsorption kinetics. The increase in GO applied amount resulted in 

larger R and k values for both metals with a more pronounced effect for Pb(II), indicating faster 

and more efficient removal of Pb(II). When Cu(II) and Pb(II) were applied together, k values 

decreased as compared to their individual application, indicating a clear competition in 

adsorption sites between the two metal species. 

 

4. Conclusions 
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Graphene oxide has been heavily proposed as a promising sorbent for heavy metal in 

aqueous solutions due to its chemical functionality, fast sorption kinetics, and evidence for high 

affinity for heavy metals in isotherm studies. However, to the knowledge of the authors, 

adsorption/filtration of heavy metals using layered GO in fix-bed has not been investigated. In 

this study, heavy metals (Pb(II) and Cu(II)) in aqueous solutions were adsorbed by a thin layer of 

GO in fix-bed sand column. An increase in injection flow rate was deemed to decrease the 

removal efficiency of both metal species. Conversely, an increase in the amount of GO to enable 

the fixed-bed column resulted in the expected improvement of heavy meal removal, especially 

for Pb(II). Dual-metal solution treatments provided evidence of metal competition for adsorption 

sites when multiple species were present in injection solution, thus resulting in lower removal 

efficiency of each individual metal than when applied as single-metal solutions. GO-sand 

column performance was generally better for the removal of Pb(II) than Cu(II). CDER model fit 

was better for Cu than Pb in corresponding treatments. An increase in the GO amount used to 

enable the column generated BTC data that was less well fit by the same CDER. This poorer fit 

may, ostensibly be due to the invalid assumption of a homogeneous medium, as it is know that 

the affinity of GO to heavy metals is much greater than that of sand, therefore creating chemical 

heterogeneity in the GO-layered sand column.  

Considering the small amount of GO required to enable the sand columns to greatly improve 

their filtration capacity and adsorption rate, this study recommends GO-enabling of filters and 
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reactive barriers to enhance filtration of heavy metals from flow-through aqueous solutions. 
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Figure Captions 

Figure 1. Illustration of the fix-bed column experiment 

Figure 2. Transport of Cu(II) and Pb(II) in single metal solutions through fixed-bed columns 

with 10mg GO at flow rate of 1mL·min
-1

. Symbols are experimental data and lines are model 

simulations.  

Figure 3. Transport of Cu(II) and Pb(II) in single metal solutions through fixed-bed columns 

with 10mg GO at flow rate of 5mL·min
-1

. Symbols are experimental data and lines are model 

simulations. 

Figure 4. Transport of Cu(II) and Pb(II) in single metal solutions through fixed-bed columns 

with 30mg GO at flow rate of 1mL·min
-1

. Symbols are experimental data and lines are model 

simulations. 

Figure 5. Transport of Cu(II) and Pb(II) in dual metal solutions through fixed-bed columns with 

10mg GO at flow rate of 1mL·min
-1

. Symbols are experimental data and lines are model 

simulations. 
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Table 1. Summary of fixed-bed column experimental data and model results 

 
Experimental data Model results 

 

 

Adsorbate GO amount 

[mg] 

Flow rate 

[mL·min
-1

] 

Pulse 

duration 

[min] 

Metal removal 

efficiency 

R k [min
-1

] R
2
 

Single Cu 0 1 140 4.2% 1.85 0.01 0.98 

metal  10 1 140 15.3% 1.99 0.04 0.90 

(Cu or Pb)  30 1 140 19.6% 1.94 0.05 0.93 

 Pb 0 1 140 11.3% 2.65 0.02 0.94 

  10 1 140 26.7% 2.76 0.07 0.87 

  30 1 140 40.5% 3.00 0.12 0.70 

 Cu 0 5 28 1.7% 1.89 0.03 0.99 

  10 5 28 10.2% 1.90 0.14 0.96 

 Pb 0 5 28 9.5% 2.65 0.08 0.91 

  10 5 28 19.0% 2.76 0.31 0.85 

Dual metal Cu 0 1 140 3.8% 1.86 0.00 0.99 

(Cu+Pb)  10 1 140 11.8% 1.95 0.02 0.98 

 Pb 0 1 140 8.0% 1.93 0.02 0.96 

  10 1 140 23.3% 2.74 0.05 0.93 
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Figure 1 
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 Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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