591 research outputs found

    Investigation of Quasi--Realistic Heterotic String Models with Reduced Higgs Spectrum

    Get PDF
    Quasi--realistic heterotic-string models in the free fermionic formulation typically contain an anomalous U(1), which gives rise to a Fayet-Iliopolous term that breaks supersymmetry at the one--loop level in string perturbation theory. Supersymmetry is restored by imposing F- and D-flatness on the vacuum. In Phys. Rev. D 78 (2008) 046009, we presented a three generation free fermionic standard-like model which did not admit stringent F- and D-flat directions, and argued that the all the moduli in the model are fixed. The particular property of the model was the reduction of the untwisted Higgs spectrum by a combination of symmetric and asymmetric boundary conditions with respect to the internal fermions associated with the compactified dimensions. In this paper we extend the analysis of free fermionic models with reduced Higgs spectrum to the cases in which the SO(10) symmetry is left unbroken, or is reduced to the flipped SU(5) subgroup. We show that all the models that we study in this paper do admit stringent flat directions. The only examples of models that do not admit stringent flat directions remain the strandard-like models of reference Phys. Rev. D 78 (2008) 046009.Comment: 38 pages, 1 figur

    Localized Tachyons and the Quantum McKay Correspondence

    Full text link
    The condensation of closed string tachyons localized at the fixed point of a C^d/\Gamma orbifold can be studied in the framework of renormalization group flow in a gauged linear sigma model. The evolution of the Higgs branch along the flow describes a resolution of singularities via the process of tachyon condensation. The study of the fate of D-branes in this process has lead to a notion of a ``quantum McKay correspondence.'' This is a hypothetical correspondence between fractional branes in an orbifold singularity in the ultraviolet with the Coulomb and Higgs branch branes in the infrared. In this paper we present some nontrivial evidence for this correspondence in the case C^2/Z_n by relating the intersection form of fractional branes to that of ``Higgs branch branes,'' the latter being branes which wrap nontrivial cycles in the resolved space.Comment: 25 pages; harvma

    Double helical conformation and extreme rigidity in a rodlike polyelectrolyte

    Get PDF
    The ubiquitous biomacromolecule DNA has an axial rigidity persistence length of ~50 nm, driven by its elegant double helical structure. While double and multiple helix structures appear widely in nature, only rarely are these found in synthetic non-chiral macromolecules. Here we describe a double helical conformation in the densely charged aromatic polyamide poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) or PBDT. This double helix macromolecule represents one of the most rigid simple molecular structures known, exhibiting an extremely high axial persistence length (~1 micrometer). We present X-ray diffraction, NMR spectroscopy, and molecular dynamics (MD) simulations that reveal and confirm the double helical conformation. The discovery of this extreme rigidity in combination with high charge density gives insight into the self-assembly of molecular ionic composites with high mechanical modulus (~1 GPa) yet with liquid-like ion motions inside, and provides fodder for formation of new 1D-reinforced composites.Comment: Accepted for publication by Nature Communication

    The long-time dynamics of two hydrodynamically-coupled swimming cells

    Get PDF
    Swimming micro-organisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such typically eludes an analytical approach. Here we consider the only case where such problem can be treated rigorously analytically, namely when the cells have spatially confined trajectories, such as the spermatozoa of some marine invertebrates. We consider two spherical cells swimming, when isolated, with arbitrary circular trajectories, and derive the long-time kinematics of their relative locomotion. We show that in the dilute limit where the cells are much further away than their size, and the size of their circular motion, a separation of time scale occurs between a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead to change in the relative position and orientation of the swimmers. We perform a multiple-scale analysis and derive the effective dynamical system - of dimension two - describing the long-time behavior of the pair of cells. We show that the system displays one type of equilibrium, and two types of rotational equilibrium, all of which are found to be unstable. A detailed mathematical analysis of the dynamical systems further allows us to show that only two cell-cell behaviors are possible in the limit of tt\to\infty, either the cells are attracted to each other (possibly monotonically), or they are repelled (possibly monotonically as well), which we confirm with numerical computations

    Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory

    Get PDF
    We study D-branes and Ramond-Ramond fields on global orbifolds of Type II string theory with vanishing H-flux using methods of equivariant K-theory and K-homology. We illustrate how Bredon equivariant cohomology naturally realizes stringy orbifold cohomology. We emphasize its role as the correct cohomological tool which captures known features of the low-energy effective field theory, and which provides new consistency conditions for fractional D-branes and Ramond-Ramond fields on orbifolds. We use an equivariant Chern character from equivariant K-theory to Bredon cohomology to define new Ramond-Ramond couplings of D-branes which generalize previous examples. We propose a definition for groups of differential characters associated to equivariant K-theory. We derive a Dirac quantization rule for Ramond-Ramond fluxes, and study flat Ramond-Ramond potentials on orbifolds.Comment: 46 pages; v2: typos correcte

    Shortest paths on systems with power-law distributed long-range connections

    Full text link
    We discuss shortest-path lengths (r)\ell(r) on periodic rings of size L supplemented with an average of pL randomly located long-range links whose lengths are distributed according to P_l \sim l^{-\xpn}. Using rescaling arguments and numerical simulation on systems of up to 10710^7 sites, we show that a characteristic length ξ\xi exists such that (r)r\ell(r) \sim r for r>ξr>\xi. For small p we find that the shortest-path length satisfies the scaling relation \ell(r,\xpn,p)/\xi = f(\xpn,r/\xi). Three regions with different asymptotic behaviors are found, respectively: a) \xpn>2 where θs=1\theta_s=1, b) 1<\xpn<2 where 0<\theta_s(\xpn)<1/2 and, c) \xpn<1 where (r)\ell(r) behaves logarithmically, i.e. θs=0\theta_s=0. The characteristic length ξ\xi is of the form ξpν\xi \sim p^{-\nu} with \nu=1/(2-\xpn) in region b), but depends on L as well in region c). A directed model of shortest-paths is solved and compared with numerical results.Comment: 10 pages, 10 figures, revtex4. Submitted to PR

    Indirect signals from light neutralinos in supersymmetric models without gaugino mass unification

    Full text link
    We examine indirect signals produced by neutralino self-annihilations, in the galactic halo or inside celestial bodies, in the frame of an effective MSSM model without gaugino-mass unification at a grand unification scale. We compare our theoretical predictions with current experimental data of gamma-rays and antiprotons in space and of upgoing muons at neutrino telescopes. Results are presented for a wide range of the neutralino mass, though our discussions are focused on light neutralinos. We find that only the antiproton signal is potentially able to set constraints on very low-mass neutralinos, below 20 GeV. The gamma-ray signal, both from the galactic center and from high galactic latitudes, requires significantly steep profiles or substantial clumpiness in order to reach detectable levels. The up-going muon signal is largely below experimental sensitivities for the neutrino flux coming from the Sun; for the flux from the Earth an improvement of about one order of magnitude in experimental sensitivities (with a low energy threshold) can make accessible neutralino masses close to O, Si and Mg nuclei masses, for which resonant capture is operative.Comment: 17 pages, 1 tables and 5 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/indirect04.ps.gz or through http://www.astroparticle.to.infn.it/. Limit from BR(Bs--> mu+ mu-) adde

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμνe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.
    corecore