986 research outputs found

    Spontaneous spinning of a magnet levitating over a superconductor

    Full text link
    A permanent magnet levitating over a superconductor is found to spontaneously spin, overcoming resistance to air friction. We explain the physics behind this remarkable effect.Comment: See http://physics.ucsd.edu/~jorge/spinning.html for movie clips of the effec

    Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localisation of polycystin-2 in vivo and in vitro

    Get PDF
    PKD2 is mutated in 15% of patients with autosomal dominant polycystic kidney disease (ADPKD). Polycystin-2 (PC2), the PKD2 protein, is a nonselective Ca2 + -permeable cation channel which may function at the cell surface and ER. Nevertheless, the factors that regulate the dynamic translocation of PC2 between the ER and other compartments are not well understood. Constitutive phosphorylation of PC2 at a single C-terminal site (Ser812) has been previously reported. Since we were unable to abolish phospholabelling of PC2 in HEK293 cells by site-directed mutagenesis of Ser812 or all 5 predicted phosphorylation sites in the C-terminus, we hypothesised that PC2 could also be phosphorylated at the N-terminus. In this paper, we report the identification of a new phosphorylation site for PC2 within its N-terminal domain (Ser76) and demonstrate that this residue is phosphorylated by glycogen synthase kinase 3 (GSK-3). The consensus recognition sequence for GSK-3 (Ser76/Ser80) is evolutionarily conserved down to lower vertebrates. In the presence of specific GSK-3 inhibitors, the lateral plasma membrane pool of endogenous PC2 redistributes into an intracellular compartment in MDCK cells without a change in primary cilia localization. Finally, co-injection of wild-type but not a S76A/S80A mutant PKD2 capped mRNA could rescue the cystic phenotype induced by an antisense morpholino oligonucleotide to pkd2 in zebrafish pronephric kidney. We conclude that surface localization of PC2 is regulated by phosphorylation at a unique GSK-3 site in its N-terminal domain in vivo and in vitro. This site is functionally significant for the maintenance of normal glomerular and tubular morphology

    Discovery of a red supergiant counterpart to RX J004722.4-252051, a ULX in NGC 253

    Get PDF
    We present two epochs of near-infrared spectroscopy of the candidate red supergiant counterpart to RX J004722.4–252051, a ULX in NGC 253. We measure radial velocities of the object and its approximate spectral type by cross-correlating our spectra with those of known red supergiants. Our VLT/X-shooter spectrum is best matched by that of early M-type supergiants, confirming the red supergiant nature of the candidate counterpart. The radial velocity of the spectrum, taken on 2014 August 23, is 417 ± 4 km s−1. This is consistent with the radial velocity measured in our spectrum taken with Magellan/MMIRS on 2013 June 28, of 410 ± 70 km s−1, although the large error on the latter implies that a radial velocity shift expected for a black hole of tens of M⊙ can easily be hidden. Using nebular emission lines we find that the radial velocity due to the rotation of NGC 253 is 351 ± 4 km s−1 at the position of the ULX. Thus the radial velocity of the counterpart confirms that the source is located in NGC 253, but also shows an offset with respect to the local bulk motion of the galaxy of 66 ± 6 km s−1. We argue that the most likely origin for this displacement lies either in a SN kick, requiring a system containing a ≳ 50 M⊙ black hole, and/or in orbital radial velocity variations in the ULX binary system, requiring a ≳ 100 M⊙ black hole. We therefore conclude that RX J004722.4–252051 is a strong candidate for a ULX containing a massive stellar black hole

    Edge and Bulk of the Fractional Quantum Hall Liquids

    Full text link
    An effective Chern-Simons theory for the Abelian quantum Hall states with edges is proposed to study the edge and bulk properties in a unified fashion. We impose a condition that the currents do not flow outside the sample. With this boundary condition, the action remains gauge invariant and the edge modes are naturally derived. We find that the integer coupling matrix KK should satisfy the condition ∑I(K−1)IJ=Îœ/m\sum_I(K^{-1})_{IJ} = \nu/m (Îœ\nu: filling of Landau levels, mm: the number of gauge fields ) for the quantum Hall liquids. Then the Hall conductance is always quantized irrespective of the detailed dynamics or the randomness at the edge.Comment: 13 pages, REVTEX, one figure appended as a postscript fil

    Stroke recovery in rats after 24h-delayed intramuscular neurotrophin-3 infusion

    Get PDF
    Objective Neurotrophin‐3 (NT3) plays a key role in the development and function of locomotor circuits including descending serotonergic and corticospinal tract axons and afferents from muscle and skin. We have previously shown that gene therapy delivery of human NT3 into affected forelimb muscles improves sensorimotor recovery after stroke in adult and elderly rats. Here, to move toward the clinic, we tested the hypothesis that intramuscular infusion of NT3 protein could improve sensorimotor recovery after stroke. Methods Rats received unilateral ischemic stroke in sensorimotor cortex. To simulate a clinically feasible time to treatment, 24 hours later rats were randomized to receive NT3 or vehicle by infusion into affected triceps brachii for 4 weeks using implanted catheters and minipumps. Results Radiolabeled NT3 crossed from the bloodstream into the brain and spinal cord in rodents with or without strokes. NT3 increased the accuracy of forelimb placement during walking on a horizontal ladder and increased use of the affected arm for lateral support during rearing. NT3 also reversed sensory impairment of the affected wrist. Functional magnetic resonance imaging during stimulation of the affected wrist showed spontaneous recovery of peri‐infarct blood oxygenation level–dependent signal that NT3 did not further enhance. Rather, NT3 induced neuroplasticity of the spared corticospinal and serotonergic pathways. Interpretation Our results show that delayed, peripheral infusion of NT3 can improve sensorimotor function after ischemic stroke. Phase I and II clinical trials of NT3 (for constipation and neuropathy) have shown that peripheral high doses are safe and well tolerated, which paves the way for NT3 as a therapy for stroke

    An experimental study of the impulse response of a vibro-impacting cantilever beam

    Get PDF
    The dynamics of a vibro-impacting cantilever beam experiment using an impact load cell is considered. The signal recorded from the cell produces spike train -type data. The issues related to the analysis of such data are discussed; particularly the sampling rate and threshold values. For vibro-impact motion of the beam, the duration of impacts is investigated by using a time of contact measure. The implications are discussed for vibro-impact systems mathematically modelled by using instantaneous impact assumptions (coefficient of restitution). Using the load cell to measure impact forces for the beam system is also considered. Then a delay reconstruction of the dynamics of the system by using interspike intervals is considered. It is demonstrated how this process is effected by the influence of noise and the data-acquision process using numerical simulations of the experimental data. It is shown how simple periodic motions can be identified by using a probability density approach and possible future research is highlighted

    Nonlinear sliding friction of adsorbed overlayers on disordered substrates

    Full text link
    We study the response of an adsorbed monolayer on a disordered substrate under a driving force using Brownian molecular-dynamics simulation. We find that the sharp longitudinal and transverse depinning transitions with hysteresis still persist in the presence of weak disorder. However, the transitions are smeared out in the strong disorder limit. The theoretical results here provide a natural explanation for the recent data for the depinning transition of Kr films on gold substrate.Comment: 8 pages, 8 figs, to appear in Phys. Rev.

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.

    On the interaction of exponential non-viscous damping with symmetric nonlinearities

    Get PDF
    This paper studies the interaction between non-viscous damping and nonlinearities for nonlinear oscillators with reflection symmetry. The non-viscous damping function is an exponential damping model which adds a decaying memory property to the damping term of the oscillator. We consider the case of softening and hardening behaviour in the frequency response of the system. Numerical simulations of the Duffing oscillator show a significant enhancement of the resonance peaks for increasing levels of non-viscous damping parameter in the hardening case, but not in the softening case. This can be explained in the general context by an energy balance analysis of the undamped unforced oscillator, which shows that for hardening nonlinearities the growth of damping with the energy level is an order of magnitude smaller in the exponential case than in the viscous case

    Persistent edge currents for paired quantum hall states

    Full text link
    We study the behavior of the persistent edge current for paired quantum Hall states on the cylinder. We show that the currents are periodic with the unit flux ϕ0=hc/e\phi_0=hc/e. At low temperatures, they exhibit anomalous oscillations in their flux dependence.The shape of the functions converges to the sawtooth function periodic with ϕ0/2\phi_0/2.Comment: RevTex 8 pages. one figure. to appear in Phys.Rev.
    • 

    corecore