23 research outputs found

    Spontaneous spinning of a magnet levitating over a superconductor

    Full text link
    A permanent magnet levitating over a superconductor is found to spontaneously spin, overcoming resistance to air friction. We explain the physics behind this remarkable effect.Comment: See http://physics.ucsd.edu/~jorge/spinning.html for movie clips of the effec

    A thermo-magnetic wheel

    Full text link

    Isolimonic acid interferes with Escherichia coli O157:H7 biofilm and TTSS in QseBC and QseA dependent fashion

    Get PDF
    BACKGROUND: E. coli O157:H7 (EHEC) is an important human pathogen. The antibiotic treatment of EHEC reportedly results in release of Shiga toxin and is therefore discouraged. Consequently, alternative preventive or therapeutic strategies for EHEC are required. The objective of the current study was to investigate the effect of citrus limonoids on cell-cell signaling, biofilm formation and type III secretion system in EHEC. RESULTS: Isolimonic acid and ichangin were the most potent inhibitors of EHEC biofilm (IC(25)=19.7 and 28.3 μM, respectively) and adhesion to Caco-2 cells. The qPCR analysis revealed that isolimonic acid and ichangin repressed LEE encoded genes by ≈3 to 12 fold. In addition, flhDC was repressed by the two limonoids (≈3 to 7 fold). Further studies suggested that isolimonic acid interferes with AI-3/epinephrine activated cell-cell signaling pathway. Loss of biofilm inhibitory activity of isolimonic acid in ΔqseBC mutant, which could be restored upon complementation, suggested a dependence on functional QseBC. Additionally, overexpression of qseBC in wild type EHEC abated the inhibitory effect of isolimonic acid. Furthermore, the isolimonic acid failed to differentially regulate ler in ΔqseA mutant, while plasmid borne expression of qseA in ΔqseA background restored the repressive effect of isolimonic acid. CONCLUSIONS: Altogether, results of study seem to suggest that isolimonic acid and ichangin are potent inhibitors of EHEC biofilm and TTSS. Furthermore, isolimonic acid appears to interfere with AI-3/epinephrine pathway in QseBC and QseA dependent fashion

    Obacunone Represses Salmonella Pathogenicity Islands 1 and 2 in an envZ-Dependent Fashion

    Get PDF
    Obacunone belongs to a class of unique triterpenoids called limonoids, present in Citrus species. Previous studies from our laboratory suggested that obacunone possesses antivirulence activity and demonstrates inhibition of cell-cell signaling in Vibrio harveyi and Escherichia coli O157:H7. The present work sought to determine the effect of obacunone on the food-borne pathogen Salmonella enterica serovar Typhimurium LT2 by using a cDNA microarray. Transcriptomic studies indicated that obacunone represses Salmonella pathogenicity island 1 (SPI1), the maltose transporter, and the hydrogenase operon. Furthermore, phenotypic data for the Caco-2 infection assay and maltose utilization were in agreement with microarray data suggesting repression of SPI1 and maltose transport. Further studies demonstrated that repression of SPI1 was plausibly mediated through hilA. Additionally, obacunone seems to repress SPI2 under SPI2-inducing conditions as well as in Caco-2 infection models. Furthermore, obacunone seems to repress hilA in an EnvZ-dependent fashion. Altogether, the results of the study seems to suggest that obacunone exerts an antivirulence effect on S. Typhimurium and may serve as a lead compound for development of antivirulence strategies for S. Typhimurium

    Quantifying the Reduction in Potential Health Risks by Determining the Sensitivity of Poliovirus Type 1 Chat Strain and Rotavirus SA-11 to Electron Beam Irradiation of Iceberg Lettuce and Spinach

    Get PDF
    Fresh produce, such as lettuce and spinach, serves as a route of food-borne illnesses. The U.S. FDA has approved the use of ionizing irradiation up to 4 kGy as a pathogen kill step for fresh-cut lettuce and spinach. The focus of this study was to determine the inactivation of poliovirus and rotavirus on lettuce and spinach when exposed to various doses of high-energy electron beam (E-beam) irradiation and to calculate the theoretical reduction in infection risks that can be achieved under different contamination scenarios and E-beam dose applications. The D(10) value (dose required to reduce virus titers by 90%) (standard error) of rotavirus on spinach and lettuce was 1.29 (± 0.64) kGy and 1.03 (± 0.05) kGy, respectively. The D(10) value (standard error) of poliovirus on spinach and lettuce was 2.35 (± 0.20) kGy and 2.32 (± 0.08) kGy, respectively. Risk assessment of data showed that if a serving (∼14 g) of lettuce was contaminated with 10 PFU/g of poliovirus, E-beam irradiation at 3 kGy will reduce the risk of infection from >2 in 10 persons to approximately 6 in 100 persons. Similarly, if a serving size (∼0.8 g) of spinach is contaminated with 10 PFU/g of rotavirus, E-beam irradiation at 3 kGy will reduce infection risks from >3 in 10 persons to approximately 5 in 100 persons. The results highlight the value of employing E-beam irradiation to reduce public health risks but also the critical importance of adhering to good agricultural practices that limit enteric virus contamination at the farm and in packing houses

    A thermo-magnetic wheel

    No full text

    Cryogenics (parts 1 and 2)

    No full text

    Signatures of host-pathogen evolutionary conflict reveal MISTR-A conserved MItochondrial STress Response network.

    No full text
    Host-pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. Using these "molecular scars" as a guide to discover gene functions, we discovered a vertebrate-specific MItochondrial STress Response (MISTR) circuit. MISTR proteins are associated with electron transport chain (ETC) factors and activated by stress signals such as interferon gamma (IFNγ) and hypoxia. Upon stress, ultraconserved microRNAs (miRNAs) down-regulate MISTR1(NDUFA4) followed by replacement with paralogs MItochondrial STress Response AntiViral (MISTRAV) and/or MItochondrial STress Response Hypoxia (MISTRH). While cells lacking MISTR1(NDUFA4) are more sensitive to chemical and viral apoptotic triggers, cells lacking MISTRAV or expressing the squirrelpox virus-encoded vMISTRAV exhibit resistance to the same insults. Rapid evolution signatures across primate genomes for MISTR1(NDUFA4) and MISTRAV indicate recent and ongoing conflicts with pathogens. MISTR homologs are also found in plants, yeasts, a fish virus, and an algal virus indicating ancient origins and suggesting diverse means of altering mitochondrial function under stress. The discovery of MISTR circuitry highlights the use of evolution-guided studies to reveal fundamental biological processes
    corecore