17 research outputs found
Institutional Facilitators and Barriers to Local Public Health Preparedness Planning for Vulnerable and At-Risk Populations
Numerous institutional facilitators and barriers to preparedness planning exist at the local level for vulnerable and at-risk populations. Findings of this evaluation study contribute to ongoing practice-based efforts to improve response services and address public health preparedness planning and training as they relate to vulnerable and at-risk populations
High expression of oleoyl-ACP hydrolase underpins life-threatening respiratory viral diseases
Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah−/− mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease
Functional Annotation of the Arabidopsis Genome Using Controlled Vocabularies
Controlled vocabularies are increasingly used by databases to describe genes and gene products because they facilitate identification of similar genes within an organism or among different organisms. One of The Arabidopsis Information Resource's goals is to associate all Arabidopsis genes with terms developed by the Gene Ontology Consortium that describe the molecular function, biological process, and subcellular location of a gene product. We have also developed terms describing Arabidopsis anatomy and developmental stages and use these to annotate published gene expression data. As of March 2004, we used computational and manual annotation methods to make 85,666 annotations representing 26,624 unique loci. We focus on associating genes to controlled vocabulary terms based on experimental data from the literature and use The Arabidopsis Information Resource-developed PubSearch software to facilitate this process. Each annotation is tagged with a combination of evidence codes, evidence descriptions, and references that provide a robust means to assess data quality. Annotation of all Arabidopsis genes will allow quantitative comparisons between sets of genes derived from sources such as microarray experiments. The Arabidopsis annotation data will also facilitate annotation of newly sequenced plant genomes by using sequence similarity to transfer annotations to homologous genes. In addition, complete and up-to-date annotations will make unknown genes easy to identify and target for experimentation. Here, we describe the process of Arabidopsis functional annotation using a variety of data sources and illustrate several ways in which this information can be accessed and used to infer knowledge about Arabidopsis and other plant species
The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community
Arabidopsis thaliana is the most widely-studied plant today. The concerted efforts of over 11 000 researchers and 4000 organizations around the world are generating a rich diversity and quantity of information and materials. This information is made available through a comprehensive on-line resource called the Arabidopsis Information Resource (TAIR) (http://arabidopsis.org), which is accessible via commonly used web browsers and can be searched and downloaded in a number of ways. In the last two years, efforts have been focused on increasing data content and diversity, functionally annotating genes and gene products with controlled vocabularies, and improving data retrieval, analysis and visualization tools. New information include sequence polymorphisms including alleles, germplasms and phenotypes, Gene Ontology annotations, gene families, protein information, metabolic pathways, gene expression data from microarray experiments and seed and DNA stocks. New data visualization and analysis tools include SeqViewer, which interactively displays the genome from the whole chromosome down to 10 kb of nucleotide sequence and AraCyc, a metabolic pathway database and map tool that allows overlaying expression data onto the pathway diagrams. Finally, we have recently incorporated seed and DNA stock information from the Arabidopsis Biological Resource Center (ABRC) and implemented a shopping-cart style on-line ordering system
Environmental Forcing of Nitrogen Fixation in the Eastern Tropical and Sub-Tropical North Atlantic Ocean
During the winter of 2006 we measured nifH gene abundances, dinitrogen (N2) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 106 L?1 nifH gene copies, unicellular group A cyanobacteria with up to 105 L?1 nifH gene copies and gamma A proteobacteria with up to 104 L?1 nifH gene copies. N2 fixation rates were low and ranged between 0.032–1.28 nmol N L?1 d?1 with a mean of 0.30±0.29 nmol N L?1 d?1 (1?, n = 65). CO2-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2±3.2 in surface waters. Nevertheless, N2 fixation rates contributed only 0.55±0.87% (range 0.03–5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N2 fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N2 fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the consequences of climate warming for N2 fixation in the North Atlantic
Recommended from our members
International scientists formulate a roadmap for insect conservation and recovery
Plant science