636 research outputs found

    Predicting the consequences of indiscriminate poaching on the population persistence of a non-target species of conservation concern

    Get PDF
    Illegal animal hunting, a contributor to biodiversity loss, occurs along a relative selectivity spectrum from indiscriminate to highly selective. Extensive research has evaluated the impacts of selective hunting on animal populations. In contrast, the ways in which indiscriminate hunting pressure can shape populations of non-target species has not yet received comparable attention. We used empirical field data collection and simulation modelling to predict the persistence of an African lion population (Panthera leo) subject to indiscriminate hunting pressure from non-target subsistence poaching via wire snares in Murchison Falls National Park, Uganda. Our simulation modelling predicted lion population extirpation following a 50 % rise of lethal poaching pressure above the observed levels. When lethal poaching pressure doubled, the lion population was extirpated in ~70 % of our simulations. We then simulated reductions in lethal poaching pressure to quantify the predicted population recovery of lions. We found that the lion population increased by 40 % with reductions in lethal poaching pressure of 50 %. When we removed lethal poaching pressure entirely, the lion population nearly doubled in just 18 years. Our results demonstrate that by reducing the density of wire snares in the study area by just 2.79/km2, the lion population transitioned from being locally extirpated in 67 % of the simulations to reaching carrying capacity inside of two lion generations. We explore how vulnerable even non-target animals are to subsistence poaching and describe the types of applied practices that can be implemented to reduce wire snaring and effectively promote the population recovery of species of conservation concern

    ABO-incompatible Kidney Transplantation

    Get PDF

    Designing Studies of Predation Risk for Improved Inference in Carnivore-Ungulate Systems

    Get PDF
    Quantifying both the lethal and non-lethal (or “risk”) effects of predation has emerged as a major research focus in carnivore-ungulate systems. While numerous studies have examined predation risk and risk effects in recent decades, a lack of standardization in approaches has impeded progress in the field. We provide an overview of five major study design considerations involved in assessing predation risk and responses of prey in carnivoreungulate systems, highlighting how different design choices can impact the strength and scope of inference. First, we stress the importance of distinguishing measures of predation risk (probability of being killed) from measures of risk effects (costs of antipredator behaviors in response to risk). Second, we recommend explicit consideration of spatial and temporal scales using a standardized framework to facilitate cross-study comparisons. Third, ungulates use visual, auditory, and olfactory sensory pathways to evaluate predation risk. Experiments that manipulate signals of risk (e.g., auditory playbacks or application of predator scent) can be powerful approaches, but the dosages and types of cues need to be carefully considered. Fourth, ungulates usually face threats from multiple predators simultaneously, and we highlight the potential for remote cameras and structural equation modeling to help address this challenge. Fifth, emerging technologies may substantially improve our ability to assess risk. We discuss several promising technologies, such as animal-borne video, unmanned aerial vehicles, and physiological sensors. We conclude with general recommendations for study design, which may improve the utility of predation risk research for the conservation and management of carnivore-ungulate systems

    Age-Based Preferences in Paired Kidney Exchange

    Get PDF
    We consider a model of Paired Kidney Exchange (PKE) with feasibility constraints on the number of patient-donor pairs involved in exchanges. Patients' preferences are restricted so that patients prefer kidneys from compatible younger donors to kidneys from older donors. In this framework, patients with compatible donors may enroll on PKE programs to receive an organ with higher expected graft survival than that of their intended donor. PKE rules that satisfy individual rationality, eciency, and strategy-proofness necessarily select pairwise exchanges. Such rules maximize the number of transplantations among pairs with the youngest donors, and sequentially among pairs with donors of dierent age group

    Diet selection in the Coyote Canis latrans

    Get PDF
    The Coyote (Canis latrans) is one of the most studied species in North America with at least 445 papers on its diet alone. While this research has yielded excellent reviews of what coyotes eat, it has been inadequate to draw deeper conclusions because no synthesis to date has considered prey availability. We accounted for prey availability by investigating the prey selection of coyotes across its distribution using the traditional Jacobs’ index method, as well as the new iterative preference averaging (IPA) method on scats and biomass. We found that coyotes selected for Dall’s Sheep (Ovis dalli), White-tailed Deer (Odocoileus virginianus), Eastern Cottontail Rabbit (Sylvilagus floridanus), and California Vole (Microtus californicus), which yielded a predator-to-preferred prey mass ratio of 1:2. We also found that coyotes avoided preying on other small mammals, including carnivorans and arboreal species. There was strong concordance between the traditional and IPA method on scats, but this pattern was weakened when biomass was considered. General linear models revealed that coyotes preferred to prey upon larger species that were riskier to hunt, reflecting their ability to hunt in groups, and were least likely to hunt solitary species. Coyotes increasingly selected Mule Deer (O. hemionus) and Snowshoe Hare (Lepus americanus) at higher latitudes, whereas Black-tailed Jackrabbit (L. californicus) were increasingly selected toward the tropics. Mule Deer were increasingly selected at higher coyote densities, while Black-tailed Jackrabbit were increasingly avoided at higher coyote densities. Coyote predation could constrain the realized niche of prey species at the distributional limits of the predator through their increased efficiency of predation reflected in increased prey selection values. These results are integral to improved understandings of Coyote ecology and can inform predictive analyses allowing for spatial variation, which ultimately will lead to better understandings about the ecological role of the coyote across different ecosystems

    Developmental and Anatomical Patterns Of IL-2 Gene Expression in Vivo in The Murine Thymus

    Get PDF
    Interleukin-2 (IL-2) is a potent growth factor that mature T lymphocytes synthesize and use as a proliferation signal. Much controversy has arisen concerning whether it is used to drive the extensive proliferation of immature pre-T cells in the thymus. Immature thymocytes acquire the competence to express IL-2 at an early stage, but it has remained uncertain whether they are activated to exercise this competence in vivo. Therefore, we have used in situ hybridization and immunohistochemistry on serial sections obtained from fetal and adult thymuses of normal C57BL/6 mice and of mice bearing the scid defect to determine where, when, and whether IL-2 is expressed in vivo. Our results show a striking spatial and temporal pattern of IL-2 expression in the normal fetal thymus. We detected a burst of IL-2 mRNA accumulation at day 14.5 of gestation, which rapidly decreased by day 15. At day 15, we observed maximal IL-2 protein production that subsequently decreased by day 16 of gestation. Both in situ hybridization and immunohistochemical staining revealed an unexpectedly strict localization of IL-2 expressing cells to patches around the periphery of the fetal thymus, creating a previously unrecognized compartment of high IL-2 protein content. IL-2 production in the day-15 fetal thymus appeared to be unaffected by the scid mutation, indicating that this response is likely to be T-cell receptor (TcR)-independent. Several features distinguish the IL-2 induction pattern in the adult thymus from that in the fetal thymus. In the normal adult thymus, IL-2-expressing cells are extremely rare (found at a frequency of 10^(-7)), but they are reproducibly detectable as isolated cells in the outer cortex and subcapsular region of the thymus. Unlike the fetal thymic IL-2 producers, the IL-2 producers in the adult thymus are completely eliminated in mice homozygous for the scid mutation. This suggests that the IL-2-expressing cells in the normal adult thymus are of a more mature phenotype than the immature, TcR-negative cells that accumulate in the scid adult thymus. Thus, our work demonstrates that two developmentally distinct types of cell interactions induce IL-2 expression in vivo: one, a broadly localized interaction in day 14-15 fetal thymus that is unaffected by the scid mutation; the other, a rare event that occurs asynchronously from late fetal through adult life, but which is completely eliminated by the scid defect. These results imply that significant differences exist between the physiological processing of thymocytes in the fetal and postnatal thymic microenvironments

    Seven ways a warming climate can kill the southern boreal forest

    Get PDF
    The southern boreal forests of North America are susceptible to large changes in composition as temperate forests or grasslands may replace them as the climate warms. A number of mechanisms for this have been shown to occur in recent years: (1) Gradual replacement of boreal trees by temperate trees through gap dynamics; (2) Sudden replacement of boreal overstory trees after gradual understory invasion by temperate tree species; (3) Trophic cascades causing delayed invasion by temperate species, followed by moderately sudden change from boreal to temperate forest; (4) Wind and/or hail storms removing large swaths of boreal forest and suddenly releasing temperate understory trees; (4) Compound disturbances: wind and fire combination; (5) Long, warm summers and increased drought stress; (6) Insect infestation due to lack of extreme winter cold; (7) Phenological disturbance, due to early springs, that has the potential to kill enormous swaths of coniferous boreal forest within a few years. Although most models project gradual change from boreal forest to temperate forest or savanna, most of these mechanisms have the capability to transform large swaths (size range tens to millions of square kilometers) of boreal forest to other vegetation types during the 21st century. Therefore, many surprises are likely to occur in the southern boreal forest over the next century, with major impacts on forest productivity, ecosystem services, and wildlife habitat
    • …
    corecore