44,488 research outputs found

    The Age, Extinction and Distance of the Old, Metal-Rich Open Cluster NGC 6791

    Get PDF
    An extensive grid of metal-rich isochrones utilizing the latest available input physics has been calculated for comparison with the old, metal-rich open cluster NGC 6791. The isochrones have been simultaneously fit to BV and VI color magnitude diagrams, with the same composition, reddening and distance modulus required for both colors. Our best fitting isochrone assumes [Fe/H] = +0.4, scaled solar abundance ratios, and dY/dZ = 2 (Y = 0.31), yielding an excellent fit to the data at all points along the major sequences. The resulting age is 8 Gyr, with E(B-V) = 0.10 and (m-M)_v = 13.42. The derived cluster parameters are fairly robust to variations in the isochrone [Fe/H] and helium abundances. All of the acceptable fits indicate that 0.07 < E(B-V) < 0.14$, 13.29 < (m-M)_v < 13.46, and that NGC 6791 has an age of 8.0+/- 0.5 Gyr. The fits also suggest that dY/dZ lies between 1 and 3. A metallicity as low as solar is clearly ruled out, as is dY/dZ = 0. Comparison with previous isochrone studies indicates that the derived reddening is primarily due to our use of the most recent color transformations, whereas the age depends upon both the colors and the input physics. Our isochrones provide an excellent fit to the Hyades zero-age main sequence as determined by Hipparcos, providing evidence that our derived reddening and distance modulus are reliable.Comment: 37 pages, 13 figures, to appear in A

    The potential role of genetic markers in talent identification and athlete assessment in elite sport

    Get PDF
    In elite sporting codes, the identification and promotion of future athletes into specialized talent pathways is heavily reliant upon objective physical, technical, and tactical characteristics, in addition to subjective coach assessments. Despite the availability of a plethora of assessments, the dependence on subjective forms of identification remain commonplace in most sporting codes. More recently, genetic markers, including several single nucleotide polymorphisms (SNPs), have been correlated with enhanced aerobic capacity, strength, and an overall increase in athletic ability. In this review, we discuss the effects of a number of candidate genes on athletic performance, across single-skilled and multifaceted sporting codes, and propose additional markers for the identification of motor skill acquisition and learning. While displaying some inconsistencies, both the ACE and ACTN3 polymorphisms appear to be more prevalent in strength and endurance sporting teams, and have been found to correlate to physical assessments. More recently, a number of polymorphisms reportedly correlating to athlete performance have gained attention, however inconsistent research design and varying sports make it difficult to ascertain the relevance to the wider sporting population. In elucidating the role of genetic markers in athleticism, existing talent identification protocols may significantly improve—and ultimately enable—targeted resourcing in junior talent pathways

    VLBA Imaging of the OH Maser in IIIZw35

    Get PDF
    We present a parsec-scale image of the OH maser in the nucleus of the active galaxy IIIZw35, made using the Very Long Baseline Array at a wavelength of 18 cm. We detected two distinct components, with a projected separation of 50 pc (for D=110 Mpc) and a separation in Doppler velocity of 70 km/s, which contain 50% of the total maser flux. Velocity gradients within these components could indicate rotation of clouds with binding mass densities of ~7000 solar masses per cubic parsec, or total masses of more than 500,000 solar masses. Emission in the 1665-MHz OH line is roughly coincident in position with that in the 1667-MHz line, although the lines peak at different Doppler velocities. We detected no 18 cm continuum emission; our upper limit implies a peak apparent optical depth greater than 3.4, assuming the maser is an unsaturated amplifier of continuum radiation.Comment: 10 pages, 3 figure

    A Search for Old Star Clusters in the Large Magellanic Cloud

    Get PDF
    We report the first results of a color-magnitude diagram survey of 25 candidate old LMC clusters. For almost all of the sample, it was possible to reach the turnoff region, and in many clusters we have several magnitudes of the main sequence. Age estimates based on the magnitude difference δT1\delta T_1 between the giant branch clump and the turnoff revealed that no new old clusters were found. The candidates turned out to be of intermediate age (1-3 Gyr) We show that the apparently old ages as inferred from integrated UBV colors can be explained by a combination of stochastic effects produced by bright stars and by photometric errors for faint clusters lying in crowded fields. The relatively metal poor candidates from the CaII triplet spectroscopy also turned out to be of intermediate age. This, combined with the fact that they lie far out in the disk, yields interesting constraints regarding the formation and evolution of the LMC disk. We also study the age distribution of intermediate age and old clusters This homogeneous set of accurate relative ages allows us to make an improved study of the history of cluster formation/destruction for ages >1>1Gyr. We confirm previous indications that there was apparently no cluster formation in the LMC during the period from 3-8 Gyr ago, and that there was a pronounced epoch of cluster formation beginning 3 Gyrs ago that peaked at about 1.5 Gyrs ago. Our results suggest that there are few, if any, genuine old clusters in the LMC left to be found.Comment: LaTeX, to be published in Nov. 1997 Astronomical Journa

    On final states of 2D decaying turbulence

    Get PDF
    Numerical and analytical studies of "final states" of two-dimensional (2D) decaying turbulence are reported. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. Although the functional relation of ωψ\omega-\psi is frequently used as the characterization of those "final states," it is just a sufficient but not necessary condition so it is not proper to be used as the definition. It is found the way through the value of the effective area S covered by the scatter ωψ\omega-\psi plot, which is initially suggested by Read, is more general, and more suitable for the definition. Based on this concept, we gave out a definition that can cover all existing results in late states of decaying 2D flows, including some weird double-valued ωψ\omega-\psi scatter plots that can not be explained before. The rest part of the paper is trying to further investigate 2D decaying turbulence with the assistance of our new definition. Some new numerical results, which lead to "bar" final states and further verify the predictive ability of statistical mechanics [2], are reported. It is realized that some simulations with narrow-band energy spectral initial conditions, which can be called "turbulence" doubtfully, lead to some final states that can not be very well explained by the statistical theory (in the meanwhile, they are still in the scope of our new definition of the "final state"). For those simulations with initial conditions of broadband energy spectra that lead to the famous dipole, we give out a mathematical re-interpreting for the so-called sin-hyperbolic ("sinh") ωψ\omega-\psi scatter plot in final states. We suggest the term "sinh" here should be replaced by "sinh-like." The corresponding physical meaning of this re-interpreting will also be discussed.Comment: 19 pages, 10 figures, submitted to "physics of fluids

    Tilt, Warp, and Simultaneous Precessions in Disks

    Get PDF
    Warps are suspected in disks around massive compact objects. However, the proposed warping source -- non-axisymmetric radiation pressure -- does not apply to white dwarfs. In this letter we report the first Smoothed Particle Hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After ~79 days in V344 Lyrae, the disk angular momentum L_d becomes misaligned to the orbital angular momentum L_o. As the gas stream remains normal to L_o, hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.Comment: 3 figures, Lette

    Accretion Discs with an Inner Spiral Density Wave

    Get PDF
    In Montgomery (2009a), we show that accretion discs in binary systems could retrogradely precess by tidal torques like the Moon and the Sun on a tilted, spinning, non-spherical Earth. In addition, we show that the state of matter and the geometrical shape of the celestial object could significantly affect the precessional value. For example, a Cataclysmic Variable (CV) Dwarf Novae (DN) non-magnetic system that shows negative superhumps in its light curve can be described by a retrogradely precessing, differentially rotating, tilted disc. Because the disc is a fluid and because the gas stream overflows the tilted disc and particles can migrate into inner disc annuli, coupled to the disc could be a retrogradely precessing inner ring that is located near the innermost annuli of the disc. However, numerical simulations by Bisikalo et al. (2003, 2004) and this work show that an inner spiral density wave can be generated instead of an inner ring. Therefore, we show that retrograde precession in non-magnetic, spinning, tilted CV DN systems can equally be described by a retrogradely precessing and differentially rotating disc with an attached retrogradely precessing inner spiral density wave so long as the wave appears at the same radius as the ring and within the plane of the tilted disc. We find that the theoretical results generated in this work agree well with the theoretical results presented in Montgomery (2009a) and thus with the numerical simulations and select CV DN systems in Montgomery (2009b) that may have a main sequence secondary. Therefore, pressure effects do need to be considered in CV DN systems that exhibit negative superhumps if the accretion discs are tilted and have an inner spiral density wave that is in the plane of the disc

    Dragonflies of (Anisoptera) Arkansas

    Get PDF
    Previous publications have recorded 69 species of dragonflies for Arkansas. Three of these are deleted, but state records for 21 new species are reported herein, bringing the list to 87 species. Based on lists from adjacent states, an additional nine species are listed as probably occurring in Arkansas. County records are given for both naiads and adults of each species, as well as first and last capture dates for adults. Specific location and capture date are given for new state records when such data are available. The most species (39) have been reported from Washington County. Twenty-nine counties list from 1-5 species, and six counties list no records
    corecore