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Numerical and analytical studies of final states of two-dimensi¢2R) decaying turbulence are
carried out. The first part of this work is trying to give a definition for final states of 2D decaying
turbulence. The functional relation af-¢, which is frequently adopted as the characterization of
those final states, is merely a sufficient but not necessary condition; moreover, it is not proper to use
it as the definition. It is found that the method through the value of the effectiveSazeaered by

the scatter- i plot, initially suggested by Read, Rhines, and Wifiitéeostrophic scatter diagrams

and potential vorticity dynamics,” J. Atmos. Sei3, 3226(1986)] is more general and suitable for

the definition. Based on this concept, a definition is presented, which covers all existing results in
late states of decaying 2D flow@ncluding some previous unexplainable weird double-valued
w-i scatter plots The remaining part of the paper is trying to further study 2D decaying turbulence
with the assistance of this definition. Some numerical results, leading to “bar” final states and further
verifying the predictive ability of statistical mechanicén, Montgomery, and Clercx, “Alternative
statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of patches and
points,” Phys. Fluids15, 1937 (2003], are reported. It is realized that some simulations with
narrow-band energy spectral initial conditions result in some final states that cannot be very well
interpreted by the statistical theofyneanwhile, those final states are still in the scope of the
definition). © 2004 American Institute of PhysidOIl: 10.1063/1.1811132

I. INTRODUCTION periodic domain from the statistical mechanics are consid-
ered. It is found that the traditional “dipole” or the one-

di It 'S. an Etjergstmg_ tOpt'C ;0| study F1;|nal sitatebsl_oft%/vo- dimensional “bar” solution will dominate the final state un-
Imensional2D) decaying turbulence. Recent publications der different conditions. For the initial vorticity field with

[hereafter YMC (Yin—Montgomery—Clercy and Ref. 2 , . . .
. . . : . - . large patch vortices, the bar solution will appear finally, and
show that numerical simulations starting from different ini- . . . o . .
the dipole will dominate the flow field if only point vortices

tial conditions(depending on sizes of patches in the vorticity or small patches exist initially. The prediction is validated by

field) can lead to different final states. The statistical Me- o most direct numerical simulations of us. which are well
chanics in 2D turbulence, known as the “point theory” and '

the “patch” theory, reveals a great predictive power in thiSrepresented by numerical results in YMC. These simulations,
kind of simulations' which employ Fourier pseudospectral methods with consid-

The point theory, advanced 30 years &ds concerned erable high resolutiop(;SlZz), have been run Ion-g enough
with a mean-field treatment of ideal line vortices. The systenf100-1500 turnover timgso ensure the reach to final states.
is Hamiltonian with a finite phase space, applied by Boltz-We even f_ound a couple of results leading to unclassified
mann statistics to its dynamics initially by Onsa@dar.was states, which are excluded by the _mos'F general case of the
further developed by several group&?In these studies, itis Patch theory(see Secs. Il and Ill in this paper for some
surprising to see that the ideal Euler mean-field prediction&esults.

fit the Navier-Stoke$NS) results. The patch theory was put ~ However, compared with considerable efforts to investi-
forward since the late 1986828 gate the “final state” of 2D turbulence, few efforts have been

In the patch theory, thé functions used to discretize the devoted to defining it. There exist some characteristics when
vorticity field in the point theory are replaced with finite the term of final states in 2D flows is referred to, but they are
area, mutually exclusive patches of vorticity. The Lynden-rather blurred and it is very easy to find some counterex-
Bell statistic§” is applied to this theory. amples for them as the research in this field goes on. For

The predictive abilities of these two theories are testednstance, sometimes it is thought that the flow field has
after the related entropies of them are defined and the preciseached the final state if the pattern of the flow remains un-
formulas suited to calculations developed. These details arghanged for a certain long time. However, in our sinh-
provided in Spring Notesby D. C. Montgomery(private  Poisson quadrupole to dipole simulatigfig. 7 in Ref. 3,
communicatiopn Several kinds of solutions in the doubly the quadrupole in the vorticity field lasts so loifyjom t

=0 to t=150) that people might think the final state has
¥Electronic mail: yinzh@Isec.cc.ac.cn already been reached, but the continued calculation shows

1070-6631/2004/16(12)/4623/12/$22.00 4623 © 2004 American Institute of Physics
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that it is merely an intermediate state towards the dipolar 9w 0y dw I
final state. Besides the above example, some other character- (55 B E&
istics look promising to be the definition of the final state in

2D turbulence. Again, we can find some counter example§nd
for these traits after some strict reasoniige will discuss R
another one in detail later in Sec. l) AHence, it is necessary w==Vy, 2

to give a definition that can cover all exiting cases of finalwith v the kinematic viscosity of the fluid. A shorthand no-
states. This definition will play an important role when atation for the nonlinear contribution to E¢l) is the Jacobian
long direct numerical simulation of decaying turbulence isJ(w, i),

carried out. It can be used to decide when the code should be
stopped. This is not a trivial decision since some of the re- dw . dw Ip
sults (including the bar final stajein YMC are obtained X ay dy ox’
partly because of the continuing calculation after formgr Loy inviscid flows, Eq(1) reduces to the Euler equation
searchers stopp%cﬂ(of course, those runs are mainly stimu-

lated by theoretical results of the statistical mechgnibs Do do

our former study, the pseudospectral code has been contin- —— = ry +J(w, ) =0, (4)
ued as long as possible to make sure that final states have

been reached. The calculation will be enormously extendednhich states that the vorticity of a fluid element is conserved
without a good definition of the final state. On the otherfor inviscid flows (note thatDw/Dt represents the material
hand, owning to the existing bottleneck in parallelization ofderivative.

the 2D pseudospectral cofi¢he extended calculation might It can be observed that if there exists a functional rela-
mean several-extra-weeks CPU time for runs with the resotion w=f(¢), then

lution of 512. The future research in this field may involve
simulations with the resolutions of 102dr higher. For those

) =1WVw (1)

Jw, ) = (3)

9P o _ It o

high-resolution simulations, it would be a nightmare for the e, 9)= X dy Iy X

study if no clue is adopted to judge the final state. A lot of

extended computation is required to ensure that there is no = (a—fa—w)a—‘p_ (a—fa—‘/’)ﬁ—‘ﬂ:o (5)
more interesting new phenomenon. In Sec. II, we will try to dpIax) dy \dpay) ox

give a definition of final states. This means that the experimental or numerical observation
In Sec. lll, with the assistance of the definition of final of the functional relationship=f() indicates the presence
stateg(on the other hand, in order to validate the definifion of a stationary state of inviscid flow. Usually, this observa-
some numerical simulations are fulfilled. This part of thetjon is considered as an indication of the presence of the final
work can also be regarded as the continued investigation Gjtate of high Reynolds number flows, i.e., the case when
YMC. Former numerical results leading to bar final states in_, Q.
YMC are confined by an initial symmetric quadrupole with @ Although thew-y functional relation is an important
certain amount of noise added to break the symmetry anghol in the characterization of so-called final states of decay-
accelerate the process of computations. Without furthefng 2D turbulence, it should be noticed that it is a sufficient
proofs, it can be argued that the bar is reached only becausgit not necessary condition of near-equilibrium states of
of the existing symmetry in the main structure. Therefore high Reynolds number flows
the generality of this kind of solutions might be endangered.  |n Fig. 1, we see a good example of the functional rela-
In Sec. Ill A, some other techniques are adopted to break thgonship betweenw and y—the famous Lamb dipolgfor
symmetry, and again they end up with bar states. further details see Refs. 31 and)3R has the linear relation
In Sec. 1l B, a totally different initial condition bringing  of w-y (for -0.5< < 0.5). Another example is the so-called
about the bar final state will be introduced. Although thew_,p Sin-hyperbo]ic re|ationshi63,_3swhich norma”y appears

statistical mechanics can predict the flow pattern for the finajn the late state of 2D decaying turbulence with a broad band
state of that simulation, it has some difficulties in explainingenergy spectral initial condition.

the w-¢ scatter plot at the late time. Here, it should be no- In Fig. 2, we have a double-valued structure of the
ticed that that final state is still in the scope of the definitiony,-y plot® and the associate@ and ¢ contour plots. They
in Sec. Il B. come from one simulation in YMC, Figs. 18 and 19, which

There are two main threads when this paper is beingannot be explained by the existing statistical-mechanical
worked on: one is the different definition of final states, andtheories_ With a Comparison between th&[,scatter p|ot and
the other is that this paper is the extended work of YMC. the contour p|ots ofv and W, it can be concluded that the
Il. DEFINING THE FINAL STATE IN 2D larger negative vortex indicated by the solid arrow corre-
TURBULENCE sponds to the longer negative branch of the/ plot. In the

meanwhile, the shortefnegative branch of thew-i plot

A. Starting from a sufficient but not necessary represents the smaller negative vori@ee the dashed ar-

condition of final states

row).
In 2D flow field, if we denote the vorticity as and the The vorticity field shown in Fig. @) represents a sta-
stream functiony, the NS equation can be written as tionary solution of the Euler equatidiw/Dt=0. This can be
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FIG. 1. The Lamb dipole with a linear relationship betweeand . It is a stationary two-dimensional solution of the Euler equation. The figure on the left
indicates the vorticity field, with one positive vortex and one negative vortex confined within the circle. Outside that circle, the vorticity is zero.

demonstrated numerically: what we did was to use the psew=1/5000. However, the vorticity field has not been
dospectral Fourier code of the NS equation and setting changed a bit front=0 to t=150. The continuing running
=0 (this is the easiest way to carry out in our casehe  of the code is simply a test of the accuracy of the pseu-
exact vorticity field of Fig. 2a) (without any noisgis taken  dospectral method.

as the initial condition for a simulation with the resolution of This double-valued structure cannot be interpreted by
512, The simulation lasts for 8 10° time steps(the time  the statistical-mechanical theory for Euler flows, even if the
step is 0.0006—about 400 turnover times if we set most general formulation of the patch theory

contours of ® contours of y

T [
. |
[ i fRARs. t _L—w;ug\. | W 0y N A
4

(@) 1 2 3 5 8 (by 1 2 3 4 5 6
FIG. 2. The double-valued structure, representing a

3 . . , . , . nonfunctionalw-¢ relation(c), is still a stationary solu-

tion of the Euler equation. The associated vorticity and
stream function contour plots are shown(& and(b).
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j=1 ! 2?:0 eal_ﬁ‘//KI

is taken into consideration. At this point, we should admit
that although the statistical-mechanical theory appears very
powerful for the study of freely evolving 2D turbulent flows,

it still has some limitations, which cannot be easily under-
stood.

The flow is not described by any functional relation be-
tweenw and ¢, but it manages to go to one specific kind of
equilibrium state. It is partly because this simulation starts
from a condition with narrow-band energy spectra—more
specifically, most energy is concentrated in few low wave
numbers. Because of inverse energy cascade phenomena (a)
2D turbulence(the energy is mainly transferred to lower
wave numberg the state of broadband energy spectra, where
the statistical mechanics might take effect, can never be
reached.

Anyway, the functional relation ob-¢ is not enough to
define the final state, and something else should be applied &
the definition. This will be the main task in the following
section.

B. A definition covering all existing possibilities ()

To estimate the quantitative flux across the region

FIG.

Z.Yin

3. (a) is the contour plot of the stream functi@nfor a flow field, and

people normally employ a diagnostic technique first intro-there is a circuit with five marked points on i) indicates one possible
duced by Read, Rhines, and thffeThey showed that the distribution of the five marked points in the s space—they form a simple

net flux of vorticity out of a closed |OOp in the physical Spacecircuit; (c) suggests another possibility—a reentrant afgas the counter-

is equal to the effective area enclosed by the corresponding
circuit in the w-¢ space. However, the usage of the effective
area is so far limited to reveal how far the flow field is away
from the state of thew-y functional relatiorte*° In the fol-
lowing discussion, we will show that it is in fact a more
powerful and more general judgment for final states of 2D
turbulence than the simple- functional relation.

First, a short outline of this diagnostic technique will be
provided in order to be self-contained.

(1) At a certain stage of a numerical simulation of 2D de-
caying turbulence, draw a closed circuit in the contour
plot of ¢ that can represent the whole flow field, find
enough points on this circuit, and mark them in order
[Fig. 3@)]. It is crucial to the whole judgment procedure
when this step should be taken to judge the final state.
We will discuss it later in this section.

(2) Find the corresponding points in the scatter plot of(4)
w-i at the same time of the simulatigiigs. 3b) and
3(c)]. The “new” labeled points will also form a closed
circuit (or, several closed circuits in the case of a reen-
trant region. The tags of the points are used to show the
directions(clockwise or counterclockwigef those cir-
cuits. In Fig. 3, we only use five points, which are g
merely enough to indicate the directions of all involved
regions(in the contour plot off and in the scatter plot of
w-).

(3) There will be two kinds of possibilities for the corre-
sponding points in the scatter plot ef ¢, which are as

clockwise region and, the clockwise region.

(i) Those points form a simple circuit, the area of
which is equal to the effective ar&a[Fig. 3b)].

(i)  Those points form a reentrant region. The effec-
tive area$S in this case is equal to the sum of
counterclockwise areas minus the sum of clock-
wise areas. For example, in Fig(c} the effec-
tive areaSis

S= Santiclockwise_ Sclockwise: Sl - Sz (7)

[In Fig. 3c), we only drew one clockwise and
one counterclockwise region for convenience. In
practice, it may have several clockwise and coun-
terclockwise areas, respectivély.

The absolute value @ indicates how far the flow field

is away from the “near steady” stateot the final state

The larger the absolute value 8f the farther the flow
field away from the near steady state. On the other hand,
if the absolute value o8 is very small(S=0), it means
that the near steady state has been reached.

The condition ofS=0 is only enough to judge the near
steady state of 2D turbulence. To define the final state, it
is necessary to remove those local equilibrium states
(e.g., see the “8-bar” state in Fig. 11 of YMC

In practice, it is not always easy to find a closed circuit

follows. in the contour plot ofy that can represent the whole flow
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contours of ® contours of

[o2]

3,

—_

(b) 4 5 6 FIG. 4. (a) and (b) are the ct_)ntour
plots of w and ¢ at the same time of
40 T T T T the early stage of a simulation starting
from some random noise. It is very
30k | hard to find a circuit that can “repre-
sent” the whole flow field oiib). (c) is
. P - s the corresponding- scatter plot, in
ool L I IR which no clear structure can be
E et St et observed.
10+ .
Or . 4
38 o
—10F [ -
-20r - .
-30r . 1
40 . -
=50 I I L !
-1.5 -1 -05 0 0.5 1
() by
field, especially if we have a very random flow fidle.qg., Note that the “real” final state of the flow field is the zero

Figs. 4a) and 4b)]. To implement the technique discussed vorticity state (wu=0) when the decaying process really
above, it is not advisable to judge whether the flow hasstops, but those cases do not appeal to us. The final state
reached the final state or not by trying to find the “representtalked about now is actually a stage when the continuing
ing” circuit. It is easier to draw the scatter-i plot of the  numerical simulation will not cause any interesting phenom-
flow first—by doing this, all the information we have about enon. Here, the condition &= 0 cannot be strictly defined.

the flow field is used. If there is no clear structure on theHOW small the absolute value & should be, depends on
- plot [e.g., Fig. 4c)], we know that it is unnecessary to (different specific conditions. According to our experience, it

find the representing circuit and continuing computations args more useful to look into the scatter plot @f y itself than
needed. In the case that a functiomal) plot is shown up, {5 give out any specific value.

the procedure of finding the close_d circuit is not necessary _at In the following, the new definition will be used to ana-
all. So actually, we only need to find the representlng C|rcun'|yZe different situations.

in the ¢ contour plot when thaw-¢ plot has a relatively _ _ _

simple multivalued structure. Normally, this should not be a(l) ~ For those results with the functional relation ©fy

very difficult task because the flow field is already very such as the Lamb dipole or the “sinh-like” relation

simple(e.g., see Sec. Il B discussed in the preceding section, it is obvious that
To sum up, the final state of 2D turbulence can be de- S=0—the “final state” has been reached.

fined asthe flow field of 2D turbulence has reached the final(ll) For those results with multivalued structures in

state if the following two conditions are truéa) The effec- w- plots, there are three kinds of situations, which

tive area $=0; (b) it is not a local equilibrium state. are as follows.
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contours of ® at t=500

8 1 1=500

FIG. 5. In the late stage of the quad-
rupole to bar simulationRef. 2, a
traveling wave appears and exists for a
very long time: from t=50 tot
=1000.(a) shows one contour plot of
the vorticity during this stagejb)
shows the corresponding-¢ plot.
The points in(b) cover a band of area
that cannot be regarded as zero.

155 =

(1) If the multivalued structure does not enclose anytion that the appearance of the bar final state is not so acci-
area(S=0), such as Fig. @), it can also be con- dental as might erroneously be concluded from the previous
sidered that the final state has been reach&d.  set of simulations.
tually, Fig. 2c¢) is not a good example: if we put The simulations are finished by the dynamical
some noise onto the weird quadrupole, and use ipseudospectral-code of the 2D NS equation, employing a
as the initial condition of a DNS run, the simula- resolution of 512<512 Fourier modes. The time step in all
tion will end up with a normal sense of the-y ~ simulations is fixed at 0.0005 and determined by the
functional relation. Therefore, this weird quadru- Currant—Friedricks—LeweyCFL) condition. The initial en-
pole is in fact a local equilibrium state. However, ergy, using the normalization of
we have to make our definition able to sort out
similar situations with maximum entropies, which

. : 11
might appear in the future researgch. E=-—— ﬂ wi dx dy,

(2)  If the multivalued structure does enclose some ar- 2(2m)
eas, but they are arranged clockwise and counter-
clockwise, and can cancel each oth@gain, S is 0.5. There is no hyperviscosity or small-scale smoothing
=0). It can also be regarded that the final state ha®f any kind in our simulations.
been reachedWe will show an example in Sec.

1'B.) A. Simulations by shrinking the size of patches in the

(3)  If the multivalued structure encloses some areasinitial vorticity field

but clockwise and counterclockwise parts of them

cannot cancel each other, the final state has not The first idea here is to start from the same quadrupolar
been reached, and continuing calculations areatch initial condition as YMC, but distort the initial condi-
needed. An extreme example is the state when théion slightly in the following way: we shrink the patch size
scatter points ofw-y are distributed across the with a small amount and reposition the patches sligtely.,
whole plot, which normally happens when the see the plots in the first row of Fig).6The symmetry of the
simulation is started with some random initial con- pasic flow has already been broken, and there is no need to
dition [e.g., Fig. 4c)]. add any noise to itunlike what we did in Fig. ) of YMC].

) o . Y e The Reynolds number is fixed at 1#8000. As can be seen
With this judgment, those “fake” final states, such as thegon Fig. 6, we have performed two simulations with two
long-lived traveling wave in the patch quadrupole to the batjigerent distorted quadrupolar initial conditions, with the
simulation(Fig. 5), can be easily sorted out. patch size reduced by a factor of 7&/8=49/64com-
pared with the patch size of the original quadrupole initial
condition[see Fig. 7a) in YMC]. Both runs clearly reveal
the emergence of the bar final state. A similar set of simula-
tions has been carried out, but now with the patch size even

In YMC, we have studied the emergence of the bar finaffurther reduced. In Fig. 7, we have shown the vorticity con-
state in a way that a large amount of noise was added to aour plots of runs with the patch size reduced by a factor of
antisymmetric basic flowthe quadrupole solutigrto break  3/4X3/4=9/16, and it isclear that no bar final state is
the symmetry of the basic flow. We decided to devote mordound in this case.
efforts to finding other initial conditions leading to the bar We may recall that in Fig. 4 of YMC, statistical me-
quasistationary final state. It will be found later in this sec-chanical theories predict that for a doubly periodical domain,

Ill. FURTHER STUDIES ON THE BAR FINAL STATE
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contours of w at t=0 contours of w at t=0

contours of w at =20

I 6

==

FIG. 6. The first three rows are contours of constant
vorticity for two runs with slightly different initial con-
ditions in the left(a) and the right(b) column. In both
runs, the initial patch sizes are reduced by a factor of
718X 7/8=49/64, and thegiches are displaced com-
pared with the quadrupole initial condition shown in
Fig. 7(a) of YMC. Pictures in the fourth row are modal
energies of final states at low wave numbers for two
runs.

1 2 3 4 5 8 1 2 3 4 5 6
2d energy spectrum at t=1400 2d energy spectrum at t=1400

large patch vortices result in the bar final state and smallogic more complete. The four simulations in Figs. 6 and 7 of
patch vortices give rise to the dipole final state. In YMC, wethis paper provide a much more direct proof for our theoret-
only tested two extreme cases of theoretical results—the inical results of the statistical mechanics. Later in this section,
tial quadrupole solutions with the largest patcligigis. 7-10 it will be seen that if the size of the patch is shrunk by a
in YMC) and those with the smallest patches or pgiigs.  factor even smaller than 9/16, the numerical simulation will
14-16 in YMO); no intermediate simulations can make thelead to the dipole final state.
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contours of @

contours of @ at t=200

2d energy spectrum at t=200

Z.Yin

FIG. 7. The first three rows are contours of constant
vorticity for two runs with slightly different initial con-
ditions in the left(a) and the right(b) column. In both
runs, the initial patch sizes are reduced by a factor of
3/4X3/4=9/16, vhich are somewhat larger reduc-
tions than initial conditions displayed in Fig. 6, and the
patches are displaced with respect to the quadrupole
initial condition shown in Fig. @) of YMC. Pictures in

the fourth row are modal energies of final states at low
wave numbers for two runs.

One question that might be raised concerns the directioequivalenceg However, the bar final statgvith 27 periodic-
of the bar final state. As can be observed in Fig. 6, it carty perpendicular to the flow directiorhas never been ob-
happen in the horizontal or vertical directigeither should served in any other direction due to the lack of periodicity of
occur with equal probability because of its symmetricalsuch a solution. Note that a solution with periodicity less
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contours of o at t=0 contours of ® at t=150

2d energy spectrum at t=290

FIG. 8. In this run, the initial patch sizes are reduced by a factor of 5/8
X 5/8=25/64, vhich are even smaller than initial conditions displayed in

Figs. 71a)-7(e) are contour plots of vorticity an¢f) is the plot of modal
energies of the final state at low wave numbers.

Final states of 2D decaying turbulence 4631

(c) if energies are distributed on those modes unequally,
then we will get a final state between dipole and bar
[like Fig. 7 in this paper, especially Fig(l¥].

Several other runs with even smaller patch sizes were
carried out, and their patch sizes are reduced by a factor of
5/8X5/8=25/64, 4/8<4/8=1/4, 3/8<3/8=9/64, 2/8
X2/8=1/16, and 1/& 1/8=1/64,respectively. The Rey-
nolds number is fixed at &=10000. We only show the de-
tails of one of these simulations in the following.

In Fig. 8, the quadrupolar patches reduced by the factor
of 5/8X5/8=25/64 are puasymmetrically to be used as
the initial condition. The four patch vortices stay together in
the flow field for a long timgfromt=0 to t=180), because
they are far away from each other and there is almost no
interaction among them. After=190, the flow begins to
evolve into the final state. At=290, most energy is concen-
trated and more or less equally distributed on the four lowest
modes of wave numbdfig. §f)]: (1,0), (-1,0), (0,2, and
(0,-1). The functionalw-¢ relation is also discovered at the
same time.

It should be realized that the size of the patches is not the
only factor affecting the final energy distribution on the four
lowest modegthese four modes determine whether the final
state is dipole or bar How to arrange the initial shrunk
patches also takes effect, and there are many choices to
achieve it. For example, although the two simulations in Fig.
7 have the patches with the same size, they show very dif-
ferent energy distributions at the final stésee the last row
of Fig. 7). It is quite reasonable that the final state is very
sensitive to the initial condition because the problem we are
dealing with is a nonlinear one with a long-time evolution.
Anyway, it still looks mysterious to us what threshold size
might result in the dipole; and it might be very interesting to
explore this topic in the future.

In Fig. 7, both runs reach the final statestat200,
which took shorter time than the run in Fig. 8. For the simu-
lations started with even smaller quadrupolar patches than
Fig. §@a), it took longer time to get final states. The extreme
case is the quadrupolar point vorticity initial fiefathen the

than 2r perpendicular to the flow direction enables a flow Siz€ Of patch is reduced to almost zerdhe evolution of

rotated with respect to theandy direction(e.g., a direction
of 45° is needed for a bar solution with\@7 periodicity).

such a simulation is described in Fig. 7 of Ref. 2, where
some random noise is added to accelerate the process, other-

Due to the inverse energy cascade phenomenon in ofyise, it might take a very long time to get the final state.
turbulence, most energy will be concentrated on the four

lowest modes of wave numbers at final states,

k= (koky) = (1,0),(- 1,0,(0,1),and(0,- ).

Different combinations of these four modes dominate flow
patterns at final states. Here are three kinds of possibilities

B. The “slanting bar” to bar simulation

Another set of simulations with initial conditions leading
to bar final states has been conducted. The initial condition is
based on the slanting bar solution already referred to in the
preceding sectiofn27 periodicity), where a certain amount
of noise is added to break the symmetry. We let the flow

(@) If energies are more or less equally distributed on thes@volve and as shown in Fig. 9, the bar final state is obtained

four modes, we will get the dipolsee the last vorticity
contour plot in Fig. 5 of YMC or Fig. 8) of this pa-
per;

(b) if energies are concentrated on eitligy 0), (-1,0) or
(0, 1), (0,-1), then we will obtain bar final statgtke
Fig. 6 in this paper

eventually. The Reynolds number in this simulation is fixed
at 1/»=8000.

Attention should be drawn to the-y scatter plot ob-
tained at the end of the simulation. It is similar to the scatter
plot obtained for the bar solution in Fig. 9 of YMC, but some
subtle differences can be observed. When considered in more
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contours of y at t=0

FIG. 9. Contours of constant vorticity
(left column and constant stream
function (right column at three differ-
ent times for the run with a new initial
condition leading to the “bar” final
state. The arrow line in the last figure
of the right column is used to mark the
flow field and calculate the effective
areaSin Fig. 10.

details, the scatter plot is in fact a double-valued structurethe w-is scatter plot, it will be found that the region covered
However, this double-valued structure is different from theby scatter points is actually reentrant, and ti®as0.

open line in Fig. 2), and this structure actually encloses This procedure can be fulfilled by drawing a line from
some areas. We may recall the discussion in Sec. Il: if thosthe bottom to the top of the contour plot ¢f(see the arrow
areas cannot cancel each other, namgiy,0, it may mean line at the last figure in the right column of Fig).9t is not

that the final state has not been reached and continuing catecessary to draw a lodjike what we did in Fig. 8a)] in
culation is required. However, with a close examination ofthis case, because we are dealing with the doubly periodical
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=1175 Furthermore, from the viewpoint of pure mathematics,
J(w, )=0 [Eq. (3)] can easily be obtained if we know there
is a functional relationo=1(). On the other hand, we can-
i not get w=f(4) if we only know J(w, #)=0 without any
other assumption.

Luckily, if we take the vorticity field of those double-
0.5t _ valuedw- s structures as the combination of two subdomains
K (in the case of Fig. 2, the vorticity field can be divided by
: making each subdomain have one positive and one negative
vortex, respectively we can still get the functionab- re-

o lation in each subdomain. Within those subdomains, statisti-
. cal mechanics can still manage to give an explanation.
To sum up, we try to give a definition of the final state of
. 2D decaying turbulence in this paper. The definition using
the effective are& in the w-¢ space is more general than the
. ordinary functional relation and can cover all existing results.
Some DNS results, which further confirm the predictive
power of the statistical mechanics, are also found.

Like what was indicated in the left column of Fig. 10 of
YMC, both simulations in Fig. 6 of this paper are started
from initial conditions in which most energies are concen-
FIG. 10. Thew-¢ scatter plot for the run shown in Fig. 9. The two ends of trated in few narrow-band low wave numbers. All existing
:Ee plot are actually Fwo loops. T_he two arrows indicate the orientations_ofnumerical results, which lead to the bar final state with the
ese two loops, which are obtained by the location of the corresponding ) ) )
points along the arrow line in the last plot of Fig. 9. -y functional relation and therefore verify the patch theory,

have similar initial conditions. On the other hand, these ini-
tial conditions are less turbulent than the broad band wave
condition, and a straight line connecting two opposite boundnumber statege.g., the flow field shown in the first row of
aries is already enough to make a loop. At the late stage dfig. 5 of YMC). Sometimes they lead to some results pre-
this simulation, the flow field is essentially one dimensional.dicted by the patch theorgFig. 9 in YMC), but sometimes
It is possible to gather all the information by studying this they also result in some weird stai@sgs. 2 and 1pthat no
straight line. As indicated in Fig. 10, the correspondingexisting statistical mechanics can explain. Because of the

points in w-¢ plot form a clockwise region and a counter- oplinear behavior of 2D turbulence, it is almost impossible
clockwise region, which can almost cancel each oﬂsee to tell when those “weird final states” will appear from the
Eq. (7)]. As a result, the absolute value of the effective areg, < -mation of the initial condition

Sis very small—the final state has been reached.

This simulation illustrates one special case covered by . Finally, fgr the mte.:gr.allty of stucﬂes on the patch and
our final state definitionsee the second last paragraph in point theory in the statistical mechanics, we should not only

Sec. Il B. Again, statistical mechanics cannot explain this€onnect the statistical theory with numerical simulatigins
double-valued structure due to the less “turbulent” initial YMC and this paper but also connect the theory with ex-
condition. periments.

1.5 T

15 I | I I I
-1.5 -1

(1) For the patch theory, so far as to our knowledge, there is
no experiment setup that can produce flat vortices,
which are illustrated in our numerical simulations. It

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have shown two kinds of double-valued
w-i structures from direct numerical simulatioffsig. 2(c)
and 1Q. It should be noticed that in the process of deriving(2
the formulas of statistical theories, Lagrange multipliers
methods are always applied to get the equilibrium states un-
der certain constraini®.g., see Ref. 29Lagrange multipli-
ers methods adopt the assumption that all involved functions
are differentiable. Hence, the double-valued structures,
which have at least one singular point without a derivative,
can never be achieved. So the functional relationf (i) is
a very basic assumption in 2D statistical mechanics, and the
double-valuedv- ¢ structure can never be well interpreted as
long as we stick to statistical mechanics.

would be exciting to see such kind of experiments in the
future.

For the point theory, it is easier to produce random point
vortices in the laboratory, but our numerical code and
theory results are only dealing with the doubly periodic
domain for the time being. It is easier to achieve high
resolutions and perform high Reynolds number simula-
tions by doing this, but it is also difficult to find any
experimental comparison. In the next step of this re-
search, we will try to connect the theory with more com-
plex boundariege.g., the no-slip boundayyfor which
some laboratory proofs can be easily found.
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long-lived vortices in two-dimensional turbulence,” J. Stat. Ph§@.833
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