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Numerical and analytical studies of final states of two-dimensional(2D) decaying turbulence are
carried out. The first part of this work is trying to give a definition for final states of 2D decaying
turbulence. The functional relation ofv-c, which is frequently adopted as the characterization of
those final states, is merely a sufficient but not necessary condition; moreover, it is not proper to use
it as the definition. It is found that the method through the value of the effective areaS covered by
the scatterv-c plot, initially suggested by Read, Rhines, and White[“Geostrophic scatter diagrams
and potential vorticity dynamics,” J. Atmos. Sci.43, 3226(1986)] is more general and suitable for
the definition. Based on this concept, a definition is presented, which covers all existing results in
late states of decaying 2D flows(including some previous unexplainable weird double-valued
v-c scatter plots). The remaining part of the paper is trying to further study 2D decaying turbulence
with the assistance of this definition. Some numerical results, leading to “bar” final states and further
verifying the predictive ability of statistical mechanics[Yin, Montgomery, and Clercx, “Alternative
statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of patches and
points,” Phys. Fluids15, 1937 (2003)], are reported. It is realized that some simulations with
narrow-band energy spectral initial conditions result in some final states that cannot be very well
interpreted by the statistical theory(meanwhile, those final states are still in the scope of the
definition). © 2004 American Institute of Physics. [DOI: 10.1063/1.1811132]

I. INTRODUCTION

It is an interesting topic to study final states of two-
dimensional(2D) decaying turbulence. Recent publications1

[hereafter YMC (Yin–Montgomery–Clercx)] and Ref. 2
show that numerical simulations starting from different ini-
tial conditions(depending on sizes of patches in the vorticity
field) can lead to different final states. The statistical me-
chanics in 2D turbulence, known as the “point theory” and
the “patch” theory, reveals a great predictive power in this
kind of simulations.

The point theory, advanced 30 years ago,3,4 is concerned
with a mean-field treatment of ideal line vortices. The system
is Hamiltonian with a finite phase space, applied by Boltz-
mann statistics to its dynamics initially by Onsager.5 It was
further developed by several groups.6–22 In these studies, it is
surprising to see that the ideal Euler mean-field predictions
fit the Navier–Stokes(NS) results. The patch theory was put
forward since the late 1980s.23–28

In the patch theory, thed functions used to discretize the
vorticity field in the point theory are replaced with finite
area, mutually exclusive patches of vorticity. The Lynden-
Bell statistics29 is applied to this theory.

The predictive abilities of these two theories are tested
after the related entropies of them are defined and the precise
formulas suited to calculations developed. These details are
provided in Spring Notesby D. C. Montgomery(private
communication). Several kinds of solutions in the doubly

periodic domain from the statistical mechanics are consid-
ered. It is found that the traditional “dipole” or the one-
dimensional “bar” solution will dominate the final state un-
der different conditions. For the initial vorticity field with
large patch vortices, the bar solution will appear finally, and
the dipole will dominate the flow field if only point vortices
or small patches exist initially. The prediction is validated by
the most direct numerical simulations of us, which are well
represented by numerical results in YMC. These simulations,
which employ Fourier pseudospectral methods with consid-
erable high resolutionss5122d, have been run long enough
(100–1500 turnover times) to ensure the reach to final states.
We even found a couple of results leading to unclassified
states, which are excluded by the most general case of the
patch theory(see Secs. II and III in this paper for some
results).

However, compared with considerable efforts to investi-
gate the “final state” of 2D turbulence, few efforts have been
devoted to defining it. There exist some characteristics when
the term of final states in 2D flows is referred to, but they are
rather blurred and it is very easy to find some counterex-
amples for them as the research in this field goes on. For
instance, sometimes it is thought that the flow field has
reached the final state if the pattern of the flow remains un-
changed for a certain long time. However, in our sinh-
Poisson quadrupole to dipole simulation(Fig. 7 in Ref. 2),
the quadrupole in the vorticity field lasts so long(from t
>0 to t>150) that people might think the final state has
already been reached, but the continued calculation showsa)Electronic mail: yinzh@lsec.cc.ac.cn
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that it is merely an intermediate state towards the dipolar
final state. Besides the above example, some other character-
istics look promising to be the definition of the final state in
2D turbulence. Again, we can find some counter examples
for these traits after some strict reasoning(we will discuss
another one in detail later in Sec. II A). Hence, it is necessary
to give a definition that can cover all exiting cases of final
states. This definition will play an important role when a
long direct numerical simulation of decaying turbulence is
carried out. It can be used to decide when the code should be
stopped. This is not a trivial decision since some of the re-
sults (including the bar final state) in YMC are obtained
partly because of the continuing calculation after former re-
searchers stopped30 (of course, those runs are mainly stimu-
lated by theoretical results of the statistical mechanics). In
our former study, the pseudospectral code has been contin-
ued as long as possible to make sure that final states have
been reached. The calculation will be enormously extended
without a good definition of the final state. On the other
hand, owning to the existing bottleneck in parallelization of
the 2D pseudospectral code,2 the extended calculation might
mean several-extra-weeks CPU time for runs with the reso-
lution of 5122. The future research in this field may involve
simulations with the resolutions of 10242 or higher. For those
high-resolution simulations, it would be a nightmare for the
study if no clue is adopted to judge the final state. A lot of
extended computation is required to ensure that there is no
more interesting new phenomenon. In Sec. II, we will try to
give a definition of final states.

In Sec. III, with the assistance of the definition of final
states(on the other hand, in order to validate the definition),
some numerical simulations are fulfilled. This part of the
work can also be regarded as the continued investigation of
YMC. Former numerical results leading to bar final states in
YMC are confined by an initial symmetric quadrupole with a
certain amount of noise added to break the symmetry and
accelerate the process of computations. Without further
proofs, it can be argued that the bar is reached only because
of the existing symmetry in the main structure. Therefore,
the generality of this kind of solutions might be endangered.
In Sec. III A, some other techniques are adopted to break the
symmetry, and again they end up with bar states.

In Sec. III B, a totally different initial condition bringing
about the bar final state will be introduced. Although the
statistical mechanics can predict the flow pattern for the final
state of that simulation, it has some difficulties in explaining
the v-c scatter plot at the late time. Here, it should be no-
ticed that that final state is still in the scope of the definition
in Sec. II B.

There are two main threads when this paper is being
worked on: one is the different definition of final states, and
the other is that this paper is the extended work of YMC.

II. DEFINING THE FINAL STATE IN 2D
TURBULENCE

A. Starting from a sufficient but not necessary
condition of final states

In 2D flow field, if we denote the vorticity asv and the
stream functionc, the NS equation can be written as

]v
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+ S ]v

]x
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]y
−
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]y
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]x
D = n¹2v s1d

and

v = − ¹2c, s2d

with n the kinematic viscosity of the fluid. A shorthand no-
tation for the nonlinear contribution to Eq.(1) is the Jacobian
Jsv ,cd,
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For inviscid flows, Eq.(1) reduces to the Euler equation
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+ Jsv,cd = 0, s4d

which states that the vorticity of a fluid element is conserved
for inviscid flows (note thatDv /Dt represents the material
derivative).

It can be observed that if there exists a functional rela-
tion v= fscd, then
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This means that the experimental or numerical observation
of the functional relationshipv= fscd indicates the presence
of a stationary state of inviscid flow. Usually, this observa-
tion is considered as an indication of the presence of the final
state of high Reynolds number flows, i.e., the case whenn
→0.

Although thev-c functional relation is an important
tool in the characterization of so-called final states of decay-
ing 2D turbulence, it should be noticed that it is a sufficient
but not necessary condition of near-equilibrium states of
high Reynolds number flows.

In Fig. 1, we see a good example of the functional rela-
tionship betweenv and c—the famous Lamb dipole(for
further details see Refs. 31 and 32). It has the linear relation
of v-c (for −0.5,c,0.5). Another example is the so-called
v-c sin-hyperbolic relationship,33–35which normally appears
in the late state of 2D decaying turbulence with a broad band
energy spectral initial condition.

In Fig. 2, we have a double-valued structure of the
v-c plot36 and the associatedv and c contour plots. They
come from one simulation in YMC, Figs. 18 and 19, which
cannot be explained by the existing statistical-mechanical
theories. With a comparison between thev-c scatter plot and
the contour plots ofv and c, it can be concluded that the
larger negative vortex indicated by the solid arrow corre-
sponds to the longer negative branch of thev-c plot. In the
meanwhile, the shorter(negative) branch of thev-c plot
represents the smaller negative vortex(see the dashed ar-
row).

The vorticity field shown in Fig. 2(a) represents a sta-
tionary solution of the Euler equationDv /Dt=0. This can be
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demonstrated numerically: what we did was to use the pseu-
dospectral Fourier code of the NS equation and settingn
=0 (this is the easiest way to carry out in our case). The
exact vorticity field of Fig. 2(a) (without any noise) is taken
as the initial condition for a simulation with the resolution of
5122. The simulation lasts for 33105 time steps(the time
step is 0.0005)—about 400 turnover times if we set

n=1/5000. However, the vorticity field has not been
changed a bit fromt=0 to t=150. The continuing running
of the code is simply a test of the accuracy of the pseu-
dospectral method.

This double-valued structure cannot be interpreted by
the statistical-mechanical theory for Euler flows, even if the
most general formulation of the patch theory

FIG. 1. The Lamb dipole with a linear relationship betweenv andc. It is a stationary two-dimensional solution of the Euler equation. The figure on the left
indicates the vorticity field, with one positive vortex and one negative vortex confined within the circle. Outside that circle, the vorticity is zero.

FIG. 2. The double-valued structure, representing a
nonfunctionalv-c relation(c), is still a stationary solu-
tion of the Euler equation. The associated vorticity and
stream function contour plots are shown in(a) and (b).
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is taken into consideration. At this point, we should admit
that although the statistical-mechanical theory appears very
powerful for the study of freely evolving 2D turbulent flows,
it still has some limitations, which cannot be easily under-
stood.

The flow is not described by any functional relation be-
tweenv andc, but it manages to go to one specific kind of
equilibrium state. It is partly because this simulation starts
from a condition with narrow-band energy spectra—more
specifically, most energy is concentrated in few low wave
numbers. Because of inverse energy cascade phenomena in
2D turbulence(the energy is mainly transferred to lower
wave numbers), the state of broadband energy spectra, where
the statistical mechanics might take effect, can never be
reached.

Anyway, the functional relation ofv-c is not enough to
define the final state, and something else should be applied as
the definition. This will be the main task in the following
section.

B. A definition covering all existing possibilities

To estimate the quantitative flux across the region,
people normally employ a diagnostic technique first intro-
duced by Read, Rhines, and White.37 They showed that the
net flux of vorticity out of a closed loop in the physical space
is equal to the effective area enclosed by the corresponding
circuit in thev-c space. However, the usage of the effective
area is so far limited to reveal how far the flow field is away
from the state of thev-c functional relation.38,39 In the fol-
lowing discussion, we will show that it is in fact a more
powerful and more general judgment for final states of 2D
turbulence than the simplev-c functional relation.

First, a short outline of this diagnostic technique will be
provided in order to be self-contained.

(1) At a certain stage of a numerical simulation of 2D de-
caying turbulence, draw a closed circuit in the contour
plot of c that can represent the whole flow field, find
enough points on this circuit, and mark them in order
[Fig. 3(a)]. It is crucial to the whole judgment procedure
when this step should be taken to judge the final state.
We will discuss it later in this section.

(2) Find the corresponding points in the scatter plot of
v-c at the same time of the simulation[Figs. 3(b) and
3(c)]. The “new” labeled points will also form a closed
circuit (or, several closed circuits in the case of a reen-
trant region). The tags of the points are used to show the
directions(clockwise or counterclockwise) of those cir-
cuits. In Fig. 3, we only use five points, which are
merely enough to indicate the directions of all involved
regions(in the contour plot ofc and in the scatter plot of
v-c).

(3) There will be two kinds of possibilities for the corre-
sponding points in the scatter plot ofv-c, which are as
follows.

(i) Those points form a simple circuit, the area of
which is equal to the effective areaS [Fig. 3(b)].

(ii ) Those points form a reentrant region. The effec-
tive areaS in this case is equal to the sum of
counterclockwise areas minus the sum of clock-
wise areas. For example, in Fig. 3(c), the effec-
tive areaS is

S= Santiclockwise− Sclockwise= S1 − S2. s7d

[In Fig. 3(c), we only drew one clockwise and
one counterclockwise region for convenience. In
practice, it may have several clockwise and coun-
terclockwise areas, respectively.]

(4) The absolute value ofS indicates how far the flow field
is away from the “near steady” state(not the final state).
The larger the absolute value ofS, the farther the flow
field away from the near steady state. On the other hand,
if the absolute value ofS is very smallsS>0d, it means
that the near steady state has been reached.

(5) The condition ofS>0 is only enough to judge the near
steady state of 2D turbulence. To define the final state, it
is necessary to remove those local equilibrium states
(e.g., see the “8-bar” state in Fig. 11 of YMC).

In practice, it is not always easy to find a closed circuit
in the contour plot ofc that can represent the whole flow

FIG. 3. (a) is the contour plot of the stream functionc for a flow field, and
there is a circuit with five marked points on it;(b) indicates one possible
distribution of the five marked points in thev-c space—they form a simple
circuit; (c) suggests another possibility—a reentrant area:S1 is the counter-
clockwise region andS2 the clockwise region.
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field, especially if we have a very random flow field[e.g.,
Figs. 4(a) and 4(b)]. To implement the technique discussed
above, it is not advisable to judge whether the flow has
reached the final state or not by trying to find the “represent-
ing” circuit. It is easier to draw the scatterv-c plot of the
flow first—by doing this, all the information we have about
the flow field is used. If there is no clear structure on the
v-c plot [e.g., Fig. 4(c)], we know that it is unnecessary to
find the representing circuit and continuing computations are
needed. In the case that a functionalv-c plot is shown up,
the procedure of finding the closed circuit is not necessary at
all. So actually, we only need to find the representing circuit
in the c contour plot when thev-c plot has a relatively
simple multivalued structure. Normally, this should not be a
very difficult task because the flow field is already very
simple (e.g., see Sec. III B).

To sum up, the final state of 2D turbulence can be de-
fined asthe flow field of 2D turbulence has reached the final
state if the following two conditions are true: (a) The effec-
tive area S>0; (b) it is not a local equilibrium state.

Note that the “real” final state of the flow field is the zero
vorticity state sv;0d when the decaying process really
stops, but those cases do not appeal to us. The final state
talked about now is actually a stage when the continuing
numerical simulation will not cause any interesting phenom-
enon. Here, the condition ofS>0 cannot be strictly defined.
How small the absolute value ofS should be, depends on
different specific conditions. According to our experience, it
is more useful to look into the scatter plot ofv-c itself than
to give out any specific value.

In the following, the new definition will be used to ana-
lyze different situations.

(I) For those results with the functional relation ofv-c
such as the Lamb dipole or the “sinh-like” relation
discussed in the preceding section, it is obvious that
S>0—the “final state” has been reached.

(II ) For those results with multivalued structures in
v-c plots, there are three kinds of situations, which
are as follows.

FIG. 4. (a) and (b) are the contour
plots of v and c at the same time of
the early stage of a simulation starting
from some random noise. It is very
hard to find a circuit that can “repre-
sent” the whole flow field on(b). (c) is
the correspondingv-c scatter plot, in
which no clear structure can be
observed.
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(1) If the multivalued structure does not enclose any
areasS>0d, such as Fig. 2(c), it can also be con-
sidered that the final state has been reached.[Ac-
tually, Fig. 2(c) is not a good example: if we put
some noise onto the weird quadrupole, and use it
as the initial condition of a DNS run, the simula-
tion will end up with a normal sense of thev-c
functional relation. Therefore, this weird quadru-
pole is in fact a local equilibrium state. However,
we have to make our definition able to sort out
similar situations with maximum entropies, which
might appear in the future research.]

(2) If the multivalued structure does enclose some ar-
eas, but they are arranged clockwise and counter-
clockwise, and can cancel each other(again, S
>0). It can also be regarded that the final state has
been reached.(We will show an example in Sec.
III B. )

(3) If the multivalued structure encloses some areas,
but clockwise and counterclockwise parts of them
cannot cancel each other, the final state has not
been reached, and continuing calculations are
needed. An extreme example is the state when the
scatter points ofv-c are distributed across the
whole plot, which normally happens when the
simulation is started with some random initial con-
dition [e.g., Fig. 4(c)].

With this judgment, those “fake” final states, such as the
long-lived traveling wave in the patch quadrupole to the bar
simulation(Fig. 5), can be easily sorted out.

III. FURTHER STUDIES ON THE BAR FINAL STATE

In YMC, we have studied the emergence of the bar final
state in a way that a large amount of noise was added to an
antisymmetric basic flow(the quadrupole solution) to break
the symmetry of the basic flow. We decided to devote more
efforts to finding other initial conditions leading to the bar
quasistationary final state. It will be found later in this sec-

tion that the appearance of the bar final state is not so acci-
dental as might erroneously be concluded from the previous
set of simulations.

The simulations are finished by the dynamical
pseudospectral-code of the 2D NS equation, employing a
resolution of 5123512 Fourier modes. The time step in all
simulations is fixed at 0.0005 and determined by the
Currant–Friedricks–Lewey(CFL) condition. The initial en-
ergy, using the normalization of

E =
1

2

1

s2pd2 /
vc dx dy,

is 0.5. There is no hyperviscosity or small-scale smoothing
of any kind in our simulations.

A. Simulations by shrinking the size of patches in the
initial vorticity field

The first idea here is to start from the same quadrupolar
patch initial condition as YMC, but distort the initial condi-
tion slightly in the following way: we shrink the patch size
with a small amount and reposition the patches slightly(e.g.,
see the plots in the first row of Fig. 6). The symmetry of the
basic flow has already been broken, and there is no need to
add any noise to it[unlike what we did in Fig. 7(b) of YMC].
The Reynolds number is fixed at 1/n=8000. As can be seen
from Fig. 6, we have performed two simulations with two
different distorted quadrupolar initial conditions, with the
patch size reduced by a factor of 7/837/8=49/64com-
pared with the patch size of the original quadrupole initial
condition [see Fig. 7(a) in YMC]. Both runs clearly reveal
the emergence of the bar final state. A similar set of simula-
tions has been carried out, but now with the patch size even
further reduced. In Fig. 7, we have shown the vorticity con-
tour plots of runs with the patch size reduced by a factor of
3/433/4=9/16, and it isclear that no bar final state is
found in this case.

We may recall that in Fig. 4 of YMC, statistical me-
chanical theories predict that for a doubly periodical domain,

FIG. 5. In the late stage of the quad-
rupole to bar simulation(Ref. 2), a
traveling wave appears and exists for a
very long time: from t=50 to t
=1000.(a) shows one contour plot of
the vorticity during this stage;(b)
shows the correspondingv-c plot.
The points in(b) cover a band of area
that cannot be regarded as zero.
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large patch vortices result in the bar final state and small
patch vortices give rise to the dipole final state. In YMC, we
only tested two extreme cases of theoretical results—the ini-
tial quadrupole solutions with the largest patches(Figs. 7–10
in YMC) and those with the smallest patches or point(Figs.
14–16 in YMC); no intermediate simulations can make the

logic more complete. The four simulations in Figs. 6 and 7 of
this paper provide a much more direct proof for our theoret-
ical results of the statistical mechanics. Later in this section,
it will be seen that if the size of the patch is shrunk by a
factor even smaller than 9/16, the numerical simulation will
lead to the dipole final state.

FIG. 6. The first three rows are contours of constant
vorticity for two runs with slightly different initial con-
ditions in the left(a) and the right(b) column. In both
runs, the initial patch sizes are reduced by a factor of
7/837/8=49/64, and the patches are displaced com-
pared with the quadrupole initial condition shown in
Fig. 7(a) of YMC. Pictures in the fourth row are modal
energies of final states at low wave numbers for two
runs.
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One question that might be raised concerns the direction
of the bar final state. As can be observed in Fig. 6, it can
happen in the horizontal or vertical direction(either should
occur with equal probability because of its symmetrical

equivalence). However, the bar final state(with 2p periodic-
ity perpendicular to the flow direction) has never been ob-
served in any other direction due to the lack of periodicity of
such a solution. Note that a solution with periodicity less

FIG. 7. The first three rows are contours of constant
vorticity for two runs with slightly different initial con-
ditions in the left(a) and the right(b) column. In both
runs, the initial patch sizes are reduced by a factor of
3/433/4=9/16, which are somewhat larger reduc-
tions than initial conditions displayed in Fig. 6, and the
patches are displaced with respect to the quadrupole
initial condition shown in Fig. 7(a) of YMC. Pictures in
the fourth row are modal energies of final states at low
wave numbers for two runs.
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than 2p perpendicular to the flow direction enables a flow
rotated with respect to thex andy direction(e.g., a direction
of 45° is needed for a bar solution with aÎ2p periodicity).

Due to the inverse energy cascade phenomenon in 2D
turbulence, most energy will be concentrated on the four
lowest modes of wave numbers at final states,

kW = skx,kyd = s1,0d,s− 1,0d,s0,1d,ands0,− 1d.

Different combinations of these four modes dominate flow
patterns at final states. Here are three kinds of possibilities:

(a) If energies are more or less equally distributed on these
four modes, we will get the dipole[see the last vorticity
contour plot in Fig. 5 of YMC or Fig. 8(f) of this pa-
per];

(b) if energies are concentrated on either(1, 0), s−1,0d or
(0, 1), s0,−1d, then we will obtain bar final states(like
Fig. 6 in this paper);

(c) if energies are distributed on those modes unequally,
then we will get a final state between dipole and bar
[like Fig. 7 in this paper, especially Fig. 7(b)].

Several other runs with even smaller patch sizes were
carried out, and their patch sizes are reduced by a factor of
5/835/8=25/64, 4/834/8=1/4, 3/833/8=9/64, 2/8
32/8=1/16, and 1/831/8=1/64,respectively. The Rey-
nolds number is fixed at 1/n=10000. We only show the de-
tails of one of these simulations in the following.

In Fig. 8, the quadrupolar patches reduced by the factor
of 5/835/8=25/64 are putasymmetrically to be used as
the initial condition. The four patch vortices stay together in
the flow field for a long time(from t=0 to t<180), because
they are far away from each other and there is almost no
interaction among them. Aftert<190, the flow begins to
evolve into the final state. Att<290, most energy is concen-
trated and more or less equally distributed on the four lowest
modes of wave number[Fig. 8(f)]: (1,0), s−1,0d, (0,1), and
s0,−1d. The functionalv-c relation is also discovered at the
same time.

It should be realized that the size of the patches is not the
only factor affecting the final energy distribution on the four
lowest modes(these four modes determine whether the final
state is dipole or bar). How to arrange the initial shrunk
patches also takes effect, and there are many choices to
achieve it. For example, although the two simulations in Fig.
7 have the patches with the same size, they show very dif-
ferent energy distributions at the final state(see the last row
of Fig. 7). It is quite reasonable that the final state is very
sensitive to the initial condition because the problem we are
dealing with is a nonlinear one with a long-time evolution.
Anyway, it still looks mysterious to us what threshold size
might result in the dipole; and it might be very interesting to
explore this topic in the future.

In Fig. 7, both runs reach the final states att<200,
which took shorter time than the run in Fig. 8. For the simu-
lations started with even smaller quadrupolar patches than
Fig. 8(a), it took longer time to get final states. The extreme
case is the quadrupolar point vorticity initial field(when the
size of patch is reduced to almost zero). The evolution of
such a simulation is described in Fig. 7 of Ref. 2, where
some random noise is added to accelerate the process, other-
wise, it might take a very long time to get the final state.

B. The “slanting bar” to bar simulation

Another set of simulations with initial conditions leading
to bar final states has been conducted. The initial condition is
based on the slanting bar solution already referred to in the
preceding section(Î2p periodicity), where a certain amount
of noise is added to break the symmetry. We let the flow
evolve and as shown in Fig. 9, the bar final state is obtained
eventually. The Reynolds number in this simulation is fixed
at 1/n=8000.

Attention should be drawn to thev-c scatter plot ob-
tained at the end of the simulation. It is similar to the scatter
plot obtained for the bar solution in Fig. 9 of YMC, but some
subtle differences can be observed. When considered in more

FIG. 8. In this run, the initial patch sizes are reduced by a factor of 5/8
35/8=25/64, which are even smaller than initial conditions displayed in
Figs. 7(a)–7(e) are contour plots of vorticity and(f) is the plot of modal
energies of the final state at low wave numbers.
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details, the scatter plot is in fact a double-valued structure.
However, this double-valued structure is different from the
open line in Fig. 2(c), and this structure actually encloses
some areas. We may recall the discussion in Sec. II: if those
areas cannot cancel each other, namely,SÞ0, it may mean
that the final state has not been reached and continuing cal-
culation is required. However, with a close examination of

the v-c scatter plot, it will be found that the region covered
by scatter points is actually reentrant, and thusS<0.

This procedure can be fulfilled by drawing a line from
the bottom to the top of the contour plot ofc (see the arrow
line at the last figure in the right column of Fig. 9). It is not
necessary to draw a loop[like what we did in Fig. 3(a)] in
this case, because we are dealing with the doubly periodical

FIG. 9. Contours of constant vorticity
(left column) and constant stream
function (right column) at three differ-
ent times for the run with a new initial
condition leading to the “bar” final
state. The arrow line in the last figure
of the right column is used to mark the
flow field and calculate the effective
areaS in Fig. 10.
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condition, and a straight line connecting two opposite bound-
aries is already enough to make a loop. At the late stage of
this simulation, the flow field is essentially one dimensional.
It is possible to gather all the information by studying this
straight line. As indicated in Fig. 10, the corresponding
points in v-c plot form a clockwise region and a counter-
clockwise region, which can almost cancel each other[see
Eq. (7)]. As a result, the absolute value of the effective area
S is very small—the final state has been reached.

This simulation illustrates one special case covered by
our final state definition(see the second last paragraph in
Sec. II B). Again, statistical mechanics cannot explain this
double-valued structure due to the less “turbulent” initial
condition.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have shown two kinds of double-valued
v-c structures from direct numerical simulations[Fig. 2(c)
and 10]. It should be noticed that in the process of deriving
the formulas of statistical theories, Lagrange multipliers
methods are always applied to get the equilibrium states un-
der certain constraints(e.g., see Ref. 29). Lagrange multipli-
ers methods adopt the assumption that all involved functions
are differentiable. Hence, the double-valued structures,
which have at least one singular point without a derivative,
can never be achieved. So the functional relationv= fscd is
a very basic assumption in 2D statistical mechanics, and the
double-valuedv-c structure can never be well interpreted as
long as we stick to statistical mechanics.

Furthermore, from the viewpoint of pure mathematics,
Jsv ,cd=0 [Eq. (3)] can easily be obtained if we know there
is a functional relationv= fscd. On the other hand, we can-
not get v= fscd if we only know Jsv ,cd=0 without any
other assumption.

Luckily, if we take the vorticity field of those double-
valuedv-c structures as the combination of two subdomains
(in the case of Fig. 2, the vorticity field can be divided by
making each subdomain have one positive and one negative
vortex, respectively), we can still get the functionalv-c re-
lation in each subdomain. Within those subdomains, statisti-
cal mechanics can still manage to give an explanation.

To sum up, we try to give a definition of the final state of
2D decaying turbulence in this paper. The definition using
the effective areaS in thev-c space is more general than the
ordinary functional relation and can cover all existing results.
Some DNS results, which further confirm the predictive
power of the statistical mechanics, are also found.

Like what was indicated in the left column of Fig. 10 of
YMC, both simulations in Fig. 6 of this paper are started
from initial conditions in which most energies are concen-
trated in few narrow-band low wave numbers. All existing
numerical results, which lead to the bar final state with the
v-c functional relation and therefore verify the patch theory,
have similar initial conditions. On the other hand, these ini-
tial conditions are less turbulent than the broad band wave
number states(e.g., the flow field shown in the first row of
Fig. 5 of YMC). Sometimes they lead to some results pre-
dicted by the patch theory(Fig. 9 in YMC), but sometimes
they also result in some weird states(Figs. 2 and 10) that no
existing statistical mechanics can explain. Because of the
nonlinear behavior of 2D turbulence, it is almost impossible
to tell when those “weird final states” will appear from the
information of the initial condition.

Finally, for the integrality of studies on the patch and
point theory in the statistical mechanics, we should not only
connect the statistical theory with numerical simulations(in
YMC and this paper), but also connect the theory with ex-
periments.

(1) For the patch theory, so far as to our knowledge, there is
no experiment setup that can produce flat vortices,
which are illustrated in our numerical simulations. It
would be exciting to see such kind of experiments in the
future.

(2) For the point theory, it is easier to produce random point
vortices in the laboratory, but our numerical code and
theory results are only dealing with the doubly periodic
domain for the time being. It is easier to achieve high
resolutions and perform high Reynolds number simula-
tions by doing this, but it is also difficult to find any
experimental comparison. In the next step of this re-
search, we will try to connect the theory with more com-
plex boundaries(e.g., the no-slip boundary), for which
some laboratory proofs can be easily found.

FIG. 10. Thev-c scatter plot for the run shown in Fig. 9. The two ends of
the plot are actually two loops. The two arrows indicate the orientations of
these two loops, which are obtained by the location of the corresponding
points along the arrow line in the last plot of Fig. 9.
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