109 research outputs found
Grupos de pesquisa em enfermagem no Brasil: comparação dos perfis de 2006 e 2016
RESUMO Objetivos Comparar o perfil dos grupos de pesquisa em Enfermagem cadastrados no Diretório do CNPq em 2006 e 2016. Métodos Estudo descritivo documental. A coleta de dados aconteceu em 2006 e 2016 a partir de consulta parametrizada com o termo Enfermagem no Diretório dos Grupos de Pesquisa, na página online do CNPq, sendo realizada a análise descritiva. Os dados foram organizados em planilha do Excel. Resultados O número de Grupos de Pesquisa aumentou de 251 em 2006 para 617 em 2016, com incremento no número de participantes. Houve redução do número de grupos sem estudantes, embora 22% permaneçam sem participação de alunos de graduação. Conclusões Os grupos de pesquisa em Enfermagem refletem avanços estruturais e políticos na geração de ciência, tecnologia e inovação da área, entretanto ainda deve ser incentivada a participação de alunos de graduação e pesquisadores estrangeiros, bem como a ampliação de recursos tecnológicos e das parcerias interinstitucionais
Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease
Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN
Glial Innate Immunity Generated by Non-Aggregated Alpha-Synuclein in Mouse: Differences between Wild-type and Parkinson's Disease-Linked Mutants
Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized pathologically by the presence in the brain of intracellular protein inclusions highly enriched in aggregated alpha-synuclein (alpha-Syn). Although it has been established that progression of the disease is accompanied by sustained activation of microglia, the underlying molecules and factors involved in these immune-triggered mechanisms remain largely unexplored. Lately, accumulating evidence has shown the presence of extracellular alpha-Syn both in its aggregated and monomeric forms in cerebrospinal fluid and blood plasma. However, the effect of extracellular alpha-Syn on cellular activation and immune mediators, as well as the impact of familial PD-linked alpha-Syn mutants on this stimulation, are still largely unknown.Methods and Findings: In this work, we have compared the activation profiles of non-aggregated, extracellular wild-type and PD-linked mutant alpha-Syn variants on primary glial and microglial cell cultures. After stimulation of cells with alpha-Syn, we measured the release of Th1- and Th2-type cytokines as well as IP-10/CXCL10, RANTES/CCL5, MCP-1/CCL2 and MIP-1 alpha/CCL3 chemokines. Contrary to what had been observed using cell lines or for the case of aggregated alpha-Syn, we found strong differences in the immune response generated by wild-type alpha-Syn and the familial PD mutants (A30P, E46K and A53T).Conclusions: These findings might contribute to explain the differences in the onset and progression of this highly debilitating disease, which could be of value in the development of rational approaches towards effective control of immune responses that are associated with PD
Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Genomic profiling using array comparative genomic hybridization define distinct subtypes of diffuse large b-cell lymphoma: a review of the literature
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin Lymphoma comprising of greater than 30% of adult non-Hodgkin Lymphomas. DLBCL represents a diverse set of lymphomas, defined as diffuse proliferation of large B lymphoid cells. Numerous cytogenetic studies including karyotypes and fluorescent in situ hybridization (FISH), as well as morphological, biological, clinical, microarray and sequencing technologies have attempted to categorize DLBCL into morphological variants, molecular and immunophenotypic subgroups, as well as distinct disease entities. Despite such efforts, most lymphoma remains undistinguishable and falls into DLBCL, not otherwise specified (DLBCL-NOS). The advent of microarray-based studies (chromosome, RNA, gene expression, etc) has provided a plethora of high-resolution data that could potentially facilitate the finer classification of DLBCL. This review covers the microarray data currently published for DLBCL. We will focus on these types of data; 1) array based CGH; 2) classical CGH; and 3) gene expression profiling studies. The aims of this review were three-fold: (1) to catalog chromosome loci that are present in at least 20% or more of distinct DLBCL subtypes; a detailed list of gains and losses for different subtypes was generated in a table form to illustrate specific chromosome loci affected in selected subtypes; (2) to determine common and distinct copy number alterations among the different subtypes and based on this information, characteristic and similar chromosome loci for the different subtypes were depicted in two separate chromosome ideograms; and, (3) to list re-classified subtypes and those that remained indistinguishable after review of the microarray data. To the best of our knowledge, this is the first effort to compile and review available literatures on microarray analysis data and their practical utility in classifying DLBCL subtypes. Although conventional cytogenetic methods such as Karyotypes and FISH have played a major role in classification schemes of lymphomas, better classification models are clearly needed to further understanding the biology, disease outcome and therapeutic management of DLBCL. In summary, microarray data reviewed here can provide better subtype specific classifications models for DLBCL
Inflammatory resolution: New opportunities for drug discovery
Treatment of inflammatory diseases today is largely based on interrupting the synthesis or action
of mediators that drive the host’s response to injury. Non-steroidal anti-inflammatories, steroids
and antihistamines, for instance, were developed on this basis. Although such small-molecule
inhibitors have provided the main treatment for inflammatory arthropathies and asthma, they are
not without their shortcomings. This review offers an alternative approach to the development of
novel therapeutics based on the endogenous mediators and mechanisms that switch off acute
inflammation and bring about its resolution. It is thought that this strategy will open up new
avenues for the future management of inflammation-based diseases
- …