10 research outputs found

    Project-Based Learning in Financials Advice

    Full text link
    [EN] The efficient use of the economic resources of companies, both large enterprises and SMEs, as well as the different means to obtain these resources, are critical aspects. For this reason, the new generation of students of degrees such as Business Administration and Management should know in depth the different types of banking entities, the main asset and liability operations of banking entities and the existing risk, as well as the main challenges of the banking sector for the following years. In the same way, a profound comprehension about the stock market and the simulation models to analyse different financial situations are aspects highly valued by companies. Based on this, learning requirements arise to seek active methodologies that allow students to acquire the knowledge and key competencies that companies currently require. Among these methodologies, we would like to highlight the Project-based Learning (PBL) through which the teaching-learning process is carried out through the development of a project that tries to give an answer to a real problem. Through PBL, students develop a high degree of autonomy and responsibility, since they are responsible for planning, structuring the work and preparing the project to solve a specific problem or situation. The lecturers¿ work in this methodology is to guide and support students throughout all the process of project development. Therefore, this article defines a PBL model to satisfy the current needs of the market in terms of financials advice. The PBL model involves two subjects: (i) Banking and Stock Market and (ii) Advanced financial simulation techniques taught in the Degree of Business Administration and Management in the Campus of Alcoy of Universitat Politècnica de València (Spain). The PBL model has been defined collaboratively to be performed on both subjects during one academic year. This PBL model provides students with the necessary skills and abilities to perform financial advisory tasks in the today's business context.This article has been supported by Universitat Politècnica de València, particularly by the Vice-rectorate for Digital Resources and Documentation (Vicerrectorado de Recursos Digitales y Documentación) and Vice-Rectorate for Studies, Quality and Accreditation (Vicerrectorado de Estudios, Calidad y Acreditación) under the Call for Learning + Teaching (Convocatoria A+D2019: Aprendizaje + Docencia. Proyectos de Innovación y Mejora Educativa) and Project Code: A157. The authors would like to acknowledge the support of the Institute of Educational Sciences (Instituto de Ciencias de la Educación), the Evaluation and Monitoring Commission for Educational Innovation and Improvement Projects (Comisión de Evaluación y Seguimiento de Proyectos de Innovación y Mejora Educativa (CESPIME) and Escuela Politécnica Superior de Alcoy.Capó I Vicedo, J.; Benito, A.; Montava-Jorda, S.; Sanchis, R. (2021). Project-Based Learning in Financials Advice. EDULEARN Proceedings (Internet). 7522-7528. https://doi.org/10.21125/edulearn.2021.1526S7522752

    Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes

    Full text link
    [EN] This work reports the potential of poly(lactic acid)-PLA composites with different halloysite nanotube (HNTs) loading (3, 6 and 9 wt%) for further uses in advanced applications as HNTs could be used as carriers for active compounds for medicine, packaging and other sectors. This work focuses on the effect of HNTs on mechanical, thermal, thermomechanical and degradation of PLA composites with HNTs. These composites can be manufactured by conventional extrusion-compounding followed by injection molding. The obtained results indicate a slight decrease in tensile and flexural strength as well as in elongation at break, both properties related to material cohesion. On the contrary, the stiffness increases with the HNTs content. The tensile strength and modulus change from 64.6 MPa/2.1 GPa (neat PLA) to 57.7/2.3 GPa MPa for the composite with 9 wt% HNTs. The elongation at break decreases from 6.1% (neat PLA) down to a half for composites with 9 wt% HNTs. Regarding flexural properties, the flexural strength and modulus change from 116.1 MPa and 3.6 GPa respectively for neat PLA to values of 107.6 MPa and 3.9 GPa for the composite with 9 wt% HNTs. HNTs do not affect the glass transition temperature with invariable values of about 64 degrees C, or the melt peak temperature, while they move the cold crystallization process towards lower values, from 112.4 degrees C for neat PLA down to 105.4 degrees C for the composite containing 9 wt% HNTs. The water uptake has been assessed to study the influence of HNTs on the water saturation. HNTs contribute to increased hydrophilicity with a change in the asymptotic water uptake from 0.95% (neat PLA) up to 1.67% (PLA with 9 wt % HNTs) and the effect of HNTs on disintegration in controlled compost soil has been carried out to see the influence of HNTs on this process, which is a slight delay on it. These PLA-HNT composites show good balanced properties and could represent an interesting solution to develop active materials.This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) through the MAT2017-84909-C2-2-R program number. D. Lascano wants to thank UPV for the grant received though the PAID-01-18 program. Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images.Montava-Jorda, S.; Chacon, V.; Lascano-Aimacaña, DS.; Sanchez-Nacher, L.; Montanes, N. (2019). Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes. Polymers. 11(8):1-21. https://doi.org/10.3390/polym11081314S121118Andreeßen, C., & Steinbüchel, A. (2018). Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Applied Microbiology and Biotechnology, 103(1), 143-157. doi:10.1007/s00253-018-9483-6Djukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., & Mojović, L. (2019). Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews, 108, 238-252. doi:10.1016/j.rser.2019.03.050Matson, J. B., & Baker, M. B. (2019). Polymers for biology, medicine and sustainability. Polymer International, 68(7), 1219-1219. doi:10.1002/pi.5829Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421Scaffaro, R., Maio, A., Sutera, F., Gulino, E., & Morreale, M. (2019). Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers, 11(4), 651. doi:10.3390/polym11040651Li, Y., Chu, Z., Li, X., Ding, X., Guo, M., Zhao, H., … Fan, Y. (2017). The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regenerative Biomaterials, 4(3), 179-190. doi:10.1093/rb/rbx009González, E. A. S., Olmos, D., Lorente, M. Á., Vélaz, I., & González-Benito, J. (2018). Preparation and Characterization of Polymer Composite Materials Based on PLA/TiO2 for Antibacterial Packaging. Polymers, 10(12), 1365. doi:10.3390/polym10121365Li, Y., Liao, C., & Tjong, S. C. (2019). Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. Nanomaterials, 9(4), 590. doi:10.3390/nano9040590Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027Filgueira, D., Holmen, S., Melbø, J., Moldes, D., Echtermeyer, A., & Chinga-Carrasco, G. (2018). 3D Printable Filaments Made of Biobased Polyethylene Biocomposites. Polymers, 10(3), 314. doi:10.3390/polym10030314Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8Yu, X., Wang, X., Zhang, Z., Peng, S., Chen, H., & Zhao, X. (2019). High-performance fully bio-based poly(lactic acid)/ polyamide11 (PLA/PA11) blends by reactive blending with multi-functionalized epoxy. Polymer Testing, 78, 105980. doi:10.1016/j.polymertesting.2019.105980Gandini, A., Lacerda, T. M., Carvalho, A. J. F., & Trovatti, E. (2015). Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 116(3), 1637-1669. doi:10.1021/acs.chemrev.5b00264Abedini, F., Ebrahimi, M., Roozbehani, A. H., Domb, A. J., & Hosseinkhani, H. (2018). Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polymers for Advanced Technologies, 29(10), 2564-2573. doi:10.1002/pat.4375Riaz Rajoka, M. S., Zhao, L., Mehwish, H. M., Wu, Y., & Mahmood, S. (2019). Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Applied Microbiology and Biotechnology, 103(4), 1557-1571. doi:10.1007/s00253-018-9550-zFerrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042DeFrates, K., Markiewicz, T., Gallo, P., Rack, A., Weyhmiller, A., Jarmusik, B., & Hu, X. (2018). Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. International Journal of Molecular Sciences, 19(6), 1717. doi:10.3390/ijms19061717Rai, K., Sun, Y., Shaliutina-Kolesova, A., Nian, R., & Xian, M. (2018). Proteins: Natural Polymers for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 8(3), 295-308. doi:10.1166/jbt.2018.1753Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Haddadi, M. H., Asadolahi, R., & Negahdari, B. (2019). The bioextraction of bioplastics with focus on polyhydroxybutyrate: a review. International Journal of Environmental Science and Technology, 16(7), 3935-3948. doi:10.1007/s13762-019-02352-0Zubir, N. H. M., Sam, S. T., Zulkepli, N. N., & Omar, M. F. (2017). The effect of rice straw particulate loading and polyethylene glycol as plasticizer on the properties of polylactic acid/polyhydroxybutyrate-valerate blends. Polymer Bulletin, 75(1), 61-76. doi:10.1007/s00289-017-2018-yGarcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018). Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. doi:10.1016/j.clay.2018.06.042Pramanik, N., Bhattacharya, S., Rath, T., De, J., Adhikary, A., Basu, R. K., & Kundu, P. P. (2019). Polyhydroxybutyrate-co-hydroxyvalerate copolymer modified graphite oxide based 3D scaffold for tissue engineering application. Materials Science and Engineering: C, 94, 534-546. doi:10.1016/j.msec.2018.10.009Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396Liu, Y., Wei, H., Wang, Z., Li, Q., & Tian, N. (2018). Simultaneous Enhancement of Strength and Toughness of PLA Induced by Miscibility Variation with PVA. Polymers, 10(10), 1178. doi:10.3390/polym10101178Behera, K., Sivanjineyulu, V., Chang, Y.-H., & Chiu, F.-C. (2018). Thermal properties, phase morphology and stability of biodegradable PLA/PBSL/HAp composites. Polymer Degradation and Stability, 154, 248-260. doi:10.1016/j.polymdegradstab.2018.06.010Notta-Cuvier, D., Odent, J., Delille, R., Murariu, M., Lauro, F., Raquez, J. M., … Dubois, P. (2014). Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing, 36, 1-9. doi:10.1016/j.polymertesting.2014.03.007Zhang, L., Lv, S., Sun, C., Wan, L., Tan, H., & Zhang, Y. (2017). Effect of MAH-g-PLA on the Properties of Wood Fiber/Polylactic Acid Composites. Polymers, 9(11), 591. doi:10.3390/polym9110591Jiang, Y., Yan, C., Wang, K., Shi, D., Liu, Z., & Yang, M. (2019). Super-Toughed PLA Blown Film with Enhanced Gas Barrier Property Available for Packaging and Agricultural Applications. Materials, 12(10), 1663. doi:10.3390/ma12101663Radusin, T., Tomšik, A., Šarić, L., Ristić, I., Giacinti Baschetti, M., Minelli, M., & Novaković, A. (2018). Hybrid Pla/wild garlic antimicrobial composite films for food packaging application. Polymer Composites, 40(3), 893-900. doi:10.1002/pc.24755Łopusiewicz, Ł., Jędra, F., & Mizielińska, M. (2018). New Poly(lactic acid) Active Packaging Composite Films Incorporated with Fungal Melanin. Polymers, 10(4), 386. doi:10.3390/polym10040386Behera, K., Chang, Y.-H., Chiu, F.-C., & Yang, J.-C. (2017). Characterization of poly(lactic acid)s with reduced molecular weight fabricated through an autoclave process. Polymer Testing, 60, 132-139. doi:10.1016/j.polymertesting.2017.03.015Matos, B. D. M., Rocha, V., da Silva, E. J., Moro, F. H., Bottene, A. C., Ribeiro, C. A., … Silva Barud, H. da. (2018). Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. Journal of Thermal Analysis and Calorimetry, 137(2), 555-562. doi:10.1007/s10973-018-7967-3Alturkestany, M. T., Panchal, V., & Thompson, M. R. (2018). Improved part strength for the fused deposition 3D printing technique by chemical modification of polylactic acid. Polymer Engineering & Science, 59(s2), E59-E64. doi:10.1002/pen.24955Fairag, R., Rosenzweig, D. H., Ramirez-Garcialuna, J. L., Weber, M. H., & Haglund, L. (2019). Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro. ACS Applied Materials & Interfaces, 11(17), 15306-15315. doi:10.1021/acsami.9b02502Sanatgar, R. H., Cayla, A., Campagne, C., & Nierstrasz, V. (2018). Morphological and electrical characterization of conductive polylactic acid based nanocomposite before and after FDM 3D printing. Journal of Applied Polymer Science, 136(6), 47040. doi:10.1002/app.47040Song, B., Li, W., Chen, Z., Fu, G., Li, C., Liu, W., … Ding, Y. (2017). Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction—A cadaveric experimental study. Journal of Orthopaedic Translation, 8, 32-39. doi:10.1016/j.jot.2016.09.001Leksakul, K., & Phuendee, M. (2018). Development of hydroxyapatite-polylactic acid composite bone fixation plate. Science and Engineering of Composite Materials, 25(5), 903-914. doi:10.1515/secm-2016-0359Zhan, X., Guo, X., Liu, R., Hu, W., Zhang, L., & Xiang, N. (2017). Intervention using a novel biodegradable hollow stent containing polylactic acid-polyprolactone-polyethylene glycol complexes against lacrimal duct obstruction disease. PLOS ONE, 12(6), e0178679. doi:10.1371/journal.pone.0178679Chen, Y., Murphy, A., Scholz, D., Geever, L. M., Lyons, J. G., & Devine, D. M. (2018). Surface-modified halloysite nanotubes reinforced poly(lactic acid) for use in biodegradable coronary stents. Journal of Applied Polymer Science, 135(30), 46521. doi:10.1002/app.46521Dillon, Doran, Fuenmayor, Healy, Gately, Major, & Lyons. (2019). The Influence of Low Shear Microbore Extrusion on the Properties of High Molecular Weight Poly(l-Lactic Acid) for Medical Tubing Applications. Polymers, 11(4), 710. doi:10.3390/polym11040710Haroosh, H. J., Dong, Y., & Lau, K.-T. (2014). Tetracycline hydrochloride (TCH)-loaded drug carrier based on PLA:PCL nanofibre mats: experimental characterisation and release kinetics modelling. Journal of Materials Science, 49(18), 6270-6281. doi:10.1007/s10853-014-8352-7Park, J.-W., Shin, J.-H., Shim, G.-S., Sim, K.-B., Jang, S.-W., & Kim, H.-J. (2019). Mechanical Strength Enhancement of Polylactic Acid Hybrid Composites. Polymers, 11(2), 349. doi:10.3390/polym11020349Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Jamróz, E., Kulawik, P., & Kopel, P. (2019). The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers, 11(4), 675. doi:10.3390/polym11040675Huang, T., Qian, Y., Wei, J., & Zhou, C. (2019). Polymeric Antimicrobial Food Packaging and Its Applications. Polymers, 11(3), 560. doi:10.3390/polym11030560Sharmeen, S., Rahman, A. F. M. M., Lubna, M. M., Salem, K. S., Islam, R., & Khan, M. A. (2018). Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioactive Materials, 3(3), 236-244. doi:10.1016/j.bioactmat.2018.03.001Arul Xavier, S., & U., V. (2018). Electrochemically grown functionalized -Multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity. Colloids and Surfaces B: Biointerfaces, 171, 186-196. doi:10.1016/j.colsurfb.2018.06.058Van den Broeck, L., Piluso, S., Soultan, A. H., De Volder, M., & Patterson, J. (2019). Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Materials Science and Engineering: C, 98, 1133-1144. doi:10.1016/j.msec.2019.01.020Zhang, X., Zhang, D., Peng, Q., Lin, J., & Wen, C. (2019). Biocompatibility of Nanoscale Hydroxyapatite Coating on TiO2 Nanotubes. Materials, 12(12), 1979. doi:10.3390/ma12121979Beke, S., Barenghi, R., Farkas, B., Romano, I., Kőrösi, L., Scaglione, S., & Brandi, F. (2014). Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings. Materials Science and Engineering: C, 44, 38-43. doi:10.1016/j.msec.2014.07.008Chandanshive, B. B., Rai, P., Rossi, A. L., Ersen, O., & Khushalani, D. (2013). Synthesis of hydroxyapatite nanotubes for biomedical applications. Materials Science and Engineering: C, 33(5), 2981-2986. doi:10.1016/j.msec.2013.03.022Zhang, Y., Nayak, T., Hong, H., & Cai, W. (2013). Biomedical Applications of Zinc Oxide Nanomaterials. Current Molecular Medicine, 13(10), 1633-1645. doi:10.2174/1566524013666131111130058Garcia-Garcia, D., Ferri, J. M., Ripoll, L., Hidalgo, M., Lopez-Martinez, J., & Balart, R. (2017). Characterization of selectively etched halloysite nanotubes by acid treatment. Applied Surface Science, 422, 616-625. doi:10.1016/j.apsusc.2017.06.104Venkatesh, C., Clear, O., Major, I., Lyons, J. G., & Devine, D. M. (2019). Faster Release of Lumen-Loaded Drugs than Matrix-Loaded Equivalent in Polylactic Acid/Halloysite Nanotubes. Materials, 12(11), 1830. doi:10.3390/ma12111830Pluta, M., Bojda, J., Piorkowska, E., Murariu, M., Bonnaud, L., & Dubois, P. (2017). The effect of halloysite nanotubes and N,N′-ethylenebis (stearamide) on morphology and properties of polylactide nanocomposites with crystalline matrix. Polymer Testing, 64, 83-91. doi:10.1016/j.polymertesting.2017.09.013Yin, X., Wang, L., Li, S., He, G., & Yang, Z. (2017). Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites. Journal of Polymer Engineering, 38(2), 119-127. doi:10.1515/polyeng-2017-0025Padhi, S., Achary, P. G. R., & Nayak, N. C. (2017). Mechanical and morphological properties of modified halloysite nanotube filled ethylene-vinyl acetate copolymer nanocomposites. Journal of Polymer Engineering, 38(3), 271-279. doi:10.1515/polyeng-2017-0075Gorrasi, G., Bugatti, V., Ussia, M., Mendichi, R., Zampino, D., Puglisi, C., & Carroccio, S. C. (2018). Halloysite nanotubes and thymol as photo protectors of biobased polyamide 11. Polymer Degradation and Stability, 152, 43-51. doi:10.1016/j.polymdegradstab.2018.03.015Massaro, M., Cavallaro, G., Colletti, C. G., D’Azzo, G., Guernelli, S., Lazzara, G., … Riela, S. (2018). Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin. Journal of Colloid and Interface Science, 524, 156-164. doi:10.1016/j.jcis.2018.04.025Sikora, J. W., Gajdoš, I., & Puszka, A. (2019). Polyethylene-Matrix Composites with Halloysite Nanotubes with Enhanced Physical/Thermal Properties. Polymers, 11(5), 787. doi:10.3390/polym11050787Therias, S., Murariu, M., & Dubois, P. (2017). Bionanocomposites based on PLA and halloysite nanotubes: From key properties to photooxidative degradation. Polymer Degradation and Stability, 145, 60-69. doi:10.1016/j.polymdegradstab.2017.06.008Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677. doi:10.1016/j.progpolymsci.2012.07.005Ke, T., & Sun, X. (2001). Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. Journal of Applied Polymer Science, 81(12), 3069-3082. doi:10.1002/app.1758Fischer, E. W., Sterzel, H. J., & Wegner, G. (1973). Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift und Zeitschrift für Polymere, 251(11), 980-990. doi:10.1007/bf01498927Li, Y., Venkateshan, K., & Sun, X. S. (2010). Mechanical and thermal properties, morphology and relaxation characteristics of poly(lactic acid) and soy flour/wood flour blends. Polymer International, n/a-n/a. doi:10.1002/pi.2834Russo, P., Cammarano, S., Bilotti, E., Peijs, T., Cerruti, P., & Acierno, D. (2013). Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 131(2), n/a-n/a. doi:10.1002/app.39798Prashantha, K., Lecouvet, B., Sclavons, M., Lacrampe, M. F., & Krawczak, P. (2012). Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.38358De Silva, R. T., Soheilmoghaddam, M., Goh, K. L., Wahit, M. U., Bee, S. A. H., Chai, S.-P., & Pasbakhsh, P. (2014). Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polymer Composites, 37(3), 861-869. doi:10.1002/pc.23244De Silva, R., Pasbakhsh, P., Goh, K., Chai, S.-P., & Chen, J. (2013). Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 48(30), 3705-3717. doi:10.1177/0021998313513046Pracella, M., Haque, M. M.-U., & Puglia, D. (2014). Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer, 55(16), 3720-3728. doi:10.1016/j.polymer.2014.06.071Kontou, E., Niaounakis, M., & Georgiopoulos, P. (2011). Comparative study of PLA nanocomposites reinforced with clay and silica nanofillers and their mixtures. Journal of Applied Polymer Science, 122(3), 1519-1529. doi:10.1002/app.34234Chen, Y., Geever, L. M., Killion, J. A., Lyons, J. G., Higginbotham, C. L., & Devine, D. M. (2015). Halloysite nanotube reinforced polylactic acid composite. Polymer Composite

    Implementation of Project-Based Learning at a Multidisciplinary Level of the Specialization in Design and Manufacture of Machines and Prototypes in the Degree of Mechanical Engineering

    Full text link
    [EN] Since the implementation of the Bologna Process, universities have been incorporating into the European Higher Education Area, adapting and unifying educational criteria for all the European centers. Although mobility and bilingualism have been clearly promoted in universities by increasing performance in certain areas, it is necessary to improve other areas such as the implementation of novel active learning methodologies to promote deep learning. For this reason, Universitat Politècnica de València is putting faith in the implementation of active methodologies that integrate the development and acquisition of competences making the students the center of the learning-teaching process. Moreover, the lack of coordination among different subjects of the specialization in design and manufacture of machines and prototypes in the degree of Mechanical Engineering, is another important issue to be considered as it makes students to find difficulties in solving real problems. In light of all these identified difficulties, the objective of this work is to design a project-based learning (PBL) model among the different subjects of the aforementioned specialization. The use of PBL will make students to actively participate in higher-level of cognitive processes. The most important premise when designing the project, in this case a gearbox casing, is the multidisciplinary aspects as the same project will have continuity and will cover different contents throughout the different subjects in the specialization. The methodology used for defining and implementing the PBL model consists of: (i) the identification of the current main difficulties; (ii) the definition of the PBL model; (iii) the identification of the necessary contents per subject to be applied in the solving process of the PBL model; and (iv) the evaluation/assessment of the PBL model implementation. Finally, both the project and the different activities to be carried out in the different subjects involved in the PBL model are presented. In addition, the results obtained through a satisfaction survey performed by the students to collect their opinion will be also analysed to provide feedback for further improvement of the PBL model.This article has been supported by Universitat Politècnica de València, particularly by the Vice-rectorate for Digital Resources and Documentation (Vicerrectorado de Recursos Digitales y Documentación) and Vice-Rectorate for Studies, Quality and Accreditation (Vicerrectorado de Estudios, Calidad y Acreditación) under the Call for Learning + Teaching (Convocatoria A+D2019: Aprendizaje + Docencia. Proyectos de Innovación y Mejora Educativa) and Project Code: A157. The authors would like to acknowledge the support of the Institute of Educational Sciences (Instituto de Ciencias de la Educación), the Evaluation and Monitoring Commission for Educational Innovation and Improvement Projects (Comisión de Evaluación y Seguimiento de Proyectos de Innovación y Mejora Educativa (CESPIME) and Escuela Politécnica Superior de AlcoyMontava-Jorda, S.; Colomer Romero, V.; Martínez Sanz, AV.; Reig-Pérez, MJ.; López Esteve, FM. (2021). Implementation of Project-Based Learning at a Multidisciplinary Level of the Specialization in Design and Manufacture of Machines and Prototypes in the Degree of Mechanical Engineering. EDULEARN Proceedings (Internet). 7477-7483. https://doi.org/10.21125/edulearn.2021.1518S7477748

    Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options

    Full text link
    [EN] Poly(hydroxy acids) have been gaining increasing attention in the search for novel sustainable materials to replace petrochemical polymers in packaging applications. Poly(hydroxy acids) are polyesters that are obtained using hydroxy acids as the starting materials, which are derived from renewable resources and biowaste. These biopolymers have attracted a lot of attention since some of them will be in the near future competitive in price to polyolefins, show excellent mechanical and barrier properties, and can be potentially recycled by physical and chemical routes. Most of the current poly(hydroxy acids) are mainly prepared by ring-opening polymerization (ROP) of cyclic monomers derived from hydroxy acids. However, their direct polymerization has received much less attention, while one of the advantages of hydroxy acids resides in the presence of an electrophile and a nucleophile in a single molecule that makes them ideal A-B type monomers for self-condensation. This review focuses on the preparation of poly(hydroxy acids) by the self-condensation polymerization of hydroxy acids. Moreover, their end-of-life options are also evaluated considering not only their biodegradability but also their potential to be chemically recycledThe authors thank the European Commission (EC) for financial support through the project SUSPOL-EJDH2020-ITN-2014-642671 and the Spanish Ministry of Science and Innovation (MICI) through the projects RTI2018-097249-B-C21, MAT2017-83373-R, and MAT-2016-78527-P. S. Torres-Giner also acknowledges MICI for his Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) and the financial support received during his stay at the Institute for Polymer Materials (POLYMAT)Gabirondo, E.; Sangroniz, A.; Etxeberria, A.; Torres-Giner, S.; Sardon, H. (2020). Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options. Polymer Chemistry. 11(30):4861-4874. https://doi.org/10.1039/D0PY00088DS48614874113

    Utilización de la gamificación en asignaturas prácticas del grado de ingeniería mecánica

    Full text link
    [EN] This work aims to expose the experience carried out in one of the subjects of the mechanical engineering degree as the results of this and the opinion of the students involved during the first years of application. The experience consisted of using the Kahoot! to verify that the theoretical concepts explained had been assimilated and increase the interest of the students in the practical classes.[ES] En este trabajo se pretende exponer la experiencia realizada en una de las asignaturas del grado de ingeniería mecánica así los como los resultados de esta y la opinión del alumnado implicados durante los primeros años de aplicación. La experiencia consistía en utilizar la aplicación Kahoot! para comprobar que se habían asimilado los conceptos teóricos explicados y además aumentar el interés del alumnado en las clases prácticas.Este artículo ha sido apoyado por la Universitat Politècnica de València, en particular por el Vicerrectorado de Recursos Digitales y Documentación y el Vicerrectorado de Estudios, Calidad y Acreditación en el marco de la Convocatoria Aprendizaje + Docencia (Convocatoria A+D 2019: Aprendizaje + Docencia. Proyectos de Innovación y Mejora Educativa) y Código del Proyecto: B193. Los autores quieren agradecer el apoyo del Instituto de Ciencias de la Educación, la Comisión de Evaluación y Seguimiento de Proyectos de Innovación y Mejora Educativa (CESPIME) y la Escuela Politécnica Superior de Alcoy.Montava-Jorda, S.; Sellés, M.; Sanchez-Caballero, S.; Peydro, MA.; Parres, F. (2022). Utilización de la gamificación en asignaturas prácticas del grado de ingeniería mecánica. EscuelaTécnica Superior de Ingeniería del Diseño. Universitat Politècnica de València. 196-201. http://hdl.handle.net/10251/19172519620

    Uso de la plataforma Kahoot en las clases prácticas de asignaturas de ingeniería

    Full text link
    [EN] The incorporation of gamification techniques in higher education is nothing new. Many professors are aware of their advantages. In this study, a reference subject is used to analyze gamification in practical classes. The Kahoot platform was tested at the beginning and end of each practical session. The improvement in the dynamism of the practical classes was remarkable compared to previous courses.[ES] La incorporación de técnicas de gamificación en la enseñanza superior no es nada nuevo. Muchos profesores son conscientes de sus ventajas. En este estudio, se utiliza una asignatura de referencia para analizar la gamificación en las clases prácticas. Se probó la plataforma Kahoot al principio y al final de cada sesión práctica. La mejora en el dinamismo de las clases prácticas fue notable en comparación con los cursos anteriores.Este artículo ha sido apoyado por la Universitat Politècnica de València, en particular por el Vicerrectorado de Recursos Digitales y Documentación y el Vicerrectorado de Estudios, Calidad y Acreditación en el marco de la Convocatoria A+D2019: Aprendizaje + Docencia (Proyectos de Innovación y Mejora Educativa) y Código de Proyecto: B193. Los autores agradecen el apoyo del Instituto de Ciencias de la Educación y la Comisión de Evaluación y Seguimiento de Proyectos de Innovación y Mejora Educativa (CESPIME).Sellés, M.; Montava-Jorda, S.; Sanchez-Caballero, S.; Peydro, MA.; Parres, F.; Pérez Bernabeu, E. (2022). Uso de la plataforma Kahoot en las clases prácticas de asignaturas de ingeniería. EscuelaTécnica Superior de Ingeniería del Diseño. Universitat Politècnica de València. 185-189. http://hdl.handle.net/10251/19175918518

    Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-co-glycidyl methacrylate)

    No full text
    In the present study, partially bio-based polyethylene terephthalate (bio-PET) was melt-mixed at 15–45 wt% with recycled polyethylene terephthalate (r-PET) obtained from remnants of the injection blowing process of contaminant-free food-use bottles. The resultant compounded materials were thereafter shaped into pieces by injection molding for characterization. Poly(styrene-co-glycidyl methacrylate) (PS-co-GMA) was added at 1–5 parts per hundred resin (phr) of polyester blend during the extrusion process to counteract the ductility and toughness reduction that occurred in the bio-PET pieces after the incorporation of r-PET. This random copolymer effectively acted as a chain extender in the polyester blend, resulting in injection-molded pieces with slightly higher mechanical resistance properties and nearly the same ductility and toughness than those of neat bio-PET. In particular, for the polyester blend containing 45 wt% of r-PET, elongation at break (εb) increased from 10.8% to 378.8% after the addition of 5 phr of PS-co-GMA, while impact strength also improved from 1.84 kJ·m−2 to 2.52 kJ·m−2. The mechanical enhancement attained was related to the formation of branched and larger macromolecules by a mechanism of chain extension based on the reaction of the multiple glycidyl methacrylate (GMA) groups present in PS-co-GMA with the hydroxyl (–OH) and carboxyl (–COOH) terminal groups of both bio-PET and r-PET. Furthermore, all the polyester blend pieces showed thermal and dimensional stabilities similar to those of neat bio-PET, remaining stable up to more than 400 °C. Therefore, the use low contents of the tested multi-functional copolymer can successfully restore the properties of bio-based but non-biodegradable polyesters during melt reprocessing with their recycled petrochemical counterparts and an effective mechanical recycling is achieved.This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R.Peer reviewe
    corecore