13 research outputs found

    Differentiating functional human islet-like aggregates from pluripotent stem cells

    Get PDF
    Publisher Copyright: © 2022 The Author(s)We present here a robust and reliable protocol by which to differentiate pancreatic islet-like aggregates (SC-islets) from human pluripotent stem cells. The 7-stage protocol mimics developmental patterning factors that induce endocrine lineage formation and spans monolayer, microwell, and aggregate suspension culture. The SC-islets demonstrate dynamic glucose-sensitive insulin secretion and an endocrine cell composition similar to those of primary human islets. SC-islets generated using this optimized protocol are suitable for in vitro modeling of islet cell pathophysiology and therapeutic applications. For complete details on the use and execution of this protocol, please refer to Balboa et al. (2022).Peer reviewe

    ÂčH-NMR metabolic profiling, antioxidant activity, and docking study of common medicinal plant-derived honey

    Get PDF
    The purpose of this investigation was to determine ¹H-NMR profiling and antioxidant activity of the most common types of honey, namely, citrus honey (HC1) (Morcott tangerine L. and Jaffa orange L.), marjoram honey (HM1) (Origanum majorana L.), and clover honey (HT1) (Trifolium alexandrinum L.), compared to their secondary metabolites (HC2, HM2, HT2, respectively). By using a ¹H-NMR-based metabolomic technique, PCA, and PLS-DA multivariate analysis, we found that HC2, HM2, HC1, and HM1 were clustered together. However, HT1 and HT2 were quite far from these and each other. This indicated that HC1, HM1, HC2, and HM2 have similar chemical compositions, while HT1 and HT2 were unique in their chemical profiles. Antioxidation potentials were determined colorimetrically for scavenging activities against DPPH, ABTS, ORAC, 5-LOX, and metal chelating activity in all honey extract samples and their secondary metabolites. Our results revealed that HC2 and HM2 possessed more antioxidant activities than HT2 in vitro. HC2 demonstrated the highest antioxidant effect in all assays, followed by HM2 (DPPH assay: IC50 2.91, 10.7 μg/mL; ABTS assay: 431.2, 210.24 at 50 ug/mL Trolox equivalent; ORAC assay: 259.5, 234.8 at 50 ug/mL Trolox equivalent; 5-LOX screening assay/IC50: 2.293, 6.136 ug/mL; and metal chelating activity at 50 ug/mL: 73.34526%, 63.75881% inhibition). We suggest that the presence of some secondary metabolites in HC and HM, such as hesperetin, linalool, and caffeic acid, increased the antioxidant activity in citrus and marjoram compared to clover honey

    The type 1 diabetes gene TYK2 regulates beta-cell development and its responses to interferon-alpha

    Get PDF
    The TYK2 gene is associated with development of type 1 diabetes. Here the authors show that TYK2 regulates beta-cell development, but at the same time TYK2 inhibition in the islets prevents IFN alpha responses and enhances their survival against CD8(+) T-cell cytotoxicity; representing a potent therapeutic target to halt T1D progression. Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic beta-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Iota interferon (IFN-Iota) mediated intracellular signalling. To study the role of TYK2 in beta-cell development and response to IFN alpha, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFN alpha-induced antigen processing and presentation, including MHC Class Iota and Class Iota Iota expression, enhancing their survival against CD8(+) T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in beta-cell development and support TYK2 inhibition in adult beta-cells as a potent therapeutic target to halt T1D progression.Peer reviewe

    Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells

    Get PDF
    Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes. Pancreatic islets derived from stem cells are benchmarked against primary cells.Peer reviewe

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    SUR1-mutant iPS cell-derived islets recapitulate the pathophysiology of congenital hyperinsulinism

    No full text
    Aims/hypothesis Congenital hyperinsulinism caused by mutations in the K-ATP-channel-encoding genes (KATPHI) is a potentially life-threatening disorder of the pancreatic beta cells. No optimal medical treatment is available for patients with diazoxide-unresponsive diffuse KATPHI. Therefore, we aimed to create a model of KATPHI using patient induced pluripotent stem cell (iPSC)-derived islets. Methods We derived iPSCs from a patient carrying a homozygous ABCC8(V187D) mutation, which inactivates the sulfonylurea receptor 1 (SUR1) subunit of the K-ATP-channel. CRISPR-Cas9 mutation-corrected iPSCs were used as controls. Both were differentiated to stem cell-derived islet-like clusters (SC-islets) and implanted into NOD-SCID gamma mice. Results SUR1-mutant and -corrected iPSC lines both differentiated towards the endocrine lineage, but SUR1-mutant stem cells generated 32% more beta-like cells (SC-beta cells) (64.6% vs 49.0%, p = 0.02) and 26% fewer alpha-like cells (16.1% vs 21.8% p = 0.01). SUR1-mutant SC-beta cells were 61% more proliferative (1.23% vs 0.76%, p = 0.006), and this phenotype could be induced in SUR1-corrected cells with pharmacological K-ATP-channel inactivation. The SUR1-mutant SC-islets secreted 3.2-fold more insulin in low glucose conditions (0.0174% vs 0.0054%/min, p = 0.0021) and did not respond to K-ATP-channel-acting drugs in vitro. Mice carrying grafts of SUR1-mutant SC-islets presented with 38% lower fasting blood glucose (4.8 vs 7.7 mmol/l, p = 0.009) and their grafts failed to efficiently shut down insulin secretion during induced hypoglycaemia. Explanted SUR1-mutant grafts displayed an increase in SC-beta cell proportion and SC-beta cell nucleomegaly, which was independent of proliferation. Conclusions/interpretation We have created a model recapitulating the known pathophysiology of KATPHI both in vitro and in vivo. We have also identified a novel role for K-ATP-channel activity during human islet development. This model will enable further studies for the improved understanding and clinical management of KATPHI without the need for primary patient tissue.Peer reviewe

    Differentiating functional human islet-like aggregates from pluripotent stem cells

    Get PDF
    Publisher Copyright: © 2022 The Author(s)We present here a robust and reliable protocol by which to differentiate pancreatic islet-like aggregates (SC-islets) from human pluripotent stem cells. The 7-stage protocol mimics developmental patterning factors that induce endocrine lineage formation and spans monolayer, microwell, and aggregate suspension culture. The SC-islets demonstrate dynamic glucose-sensitive insulin secretion and an endocrine cell composition similar to those of primary human islets. SC-islets generated using this optimized protocol are suitable for in vitro modeling of islet cell pathophysiology and therapeutic applications. For complete details on the use and execution of this protocol, please refer to Balboa et al. (2022).Peer reviewe

    GC-MS analysis of honeybee products derived from medicinal plants

    No full text
    Abstract Background Honeybees provide a wealth of valuable natural products containing health-promoting bioactive compounds, including honey, bee bread, bee venom, bee pollen, propolis, and royal jelly. In the present study, we investigated the chemical composition of four honeybee products (bees, honey, royal jelly, and bee bread) derived from three medicinal plants (marjoram, trifolium, and citrus) using headspace GC-MS. Results GC-MS analysis coupled with the headspace method resulted in identification of 24 volatile compounds in marjoram honey, 14 volatile compounds in trifolium honey, and 25 volatile compounds in citrus honey, e.g., some of these compounds appeared in all three types of honey aroma, which are 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 2-furancarboxaldehyde, 5-(hydroxymethyl) and other unique compounds specific for each type where 23 compounds were from marjoram bees, 38 compounds from trifolium bees, and about 37 compounds were identified in citrus bees where 2,4-decadienal, (E, E) and methyl N-methyl anthranilate were common in all. Furthermore, the volatile compounds of all three types of royal jelly aroma were acetic acid, 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 8-nonen-2-one and furfural where one compound appeared in both marjoram and trifolium royal jelly that is 2-furancarboxaldehyde,5-(Hydroxymethyl) and the volatile compounds in marjoram and citrus are 2,3-butanediol and 5-methylfurfural also only one volatile compound appear in both trifolium and citrus royal jelly that is furfur alcohol, Finally, 3 compounds from marjoram bee bread, 30 volatile compounds from trifolium bee bread, and 3 volatile compounds in citrus bee bread were identified. Conclusions A detailed metabolomic analysis of the four honey product groups revealed an intriguing chemical diversity, with each sample exhibiting its own chemical fingerprint
    corecore