457 research outputs found

    Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression

    Get PDF
    International audienceABSTRACT: INTRODUCTION: Altered expression of Septin 9 (SEPT9), a septin coding for multiple isoform variants, has been observed in several carcinomas including colorectal, head and neck, ovarian and breast, compared to normal tissue. Mechanisms regulating its expression during tumor initiation and progression in vivo and the oncogenic function of its different isoforms remain elusive. METHODS: Using an integrative approach, we investigated SEPT9 at the genetic, epigenetic, mRNA, and protein levels in breast cancer. We analyzed a panel of breast cancer cell lines, human primary tumors and corresponding tumor-free areas, normal breast from reduction mammoplasty patients, as well as primary mammary gland adenocarcinomas derived from the Polyoma Virus Middle T antigen mouse model (PyMT). MCF7 clones expressing individual GFP-tagged SEPT9 isoforms were used to determine their respective intracellular distribution and affect on cell migration. RESULTS: An overall increase in gene amplification and altered expression of SEPT9 was observed during breast tumorigenesis. We identified an intragenic alternative promoter whose methylation regulates SEPT9_v3 expression. Transfection of specific GFP-SEPT9 isoforms in MCF7 cells indicates that these isoforms exhibit differential localization and affect migration rates. Additionally, the loss of an uncharacterized SEPT9 nucleolar localization is observed during tumorigenesis. CONCLUSIONS: In this study we found conserved in vivo changes of SEPT9 gene amplification and overexpression during human and mouse breast tumorigenesis. We show that DNA methylation is a prominent mechanism responsible for regulating differential SEPT9 isoform expression and that breast tumor samples exhibit distinctive SEPT9 intracellular localization. Together, these findings support the significance of SEPT9 as a promising tool in breast cancer detection and further emphasize the importance of analyzing and targeting SEPT9 isoform specific expression and function

    Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review

    Get PDF
    Background: Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps. Methodology: This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss). Findings: Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents. Conclusions: It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem

    Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill

    Get PDF
    The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of ∼4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities in surface sediments collected at 64 sites by targeted sequencing of 16S rRNA genes, shotgun metagenomic sequencing of 14 of these samples and mineralization experiments using (14)C-labeled model substrates. The 16S rRNA gene data indicated that the most heavily oil-impacted sediments were enriched in an uncultured Gammaproteobacterium and a Colwellia species, both of which were highly similar to sequences in the DWH deep-sea hydrocarbon plume. The primary drivers in structuring the microbial community were nitrogen and hydrocarbons. Annotation of unassembled metagenomic data revealed the most abundant hydrocarbon degradation pathway encoded genes involved in degrading aliphatic and simple aromatics via butane monooxygenase. The activity of key hydrocarbon degradation pathways by sediment microbes was confirmed by determining the mineralization of (14)C-labeled model substrates in the following order: propylene glycol, dodecane, toluene and phenanthrene. Further, analysis of metagenomic sequence data revealed an increase in abundance of genes involved in denitrification pathways in samples that exceeded the Environmental Protection Agency (EPA)'s benchmarks for polycyclic aromatic hydrocarbons (PAHs) compared with those that did not. Importantly, these data demonstrate that the indigenous sediment microbiota contributed an important ecosystem service for remediation of oil in the Gulf. However, PAHs were more recalcitrant to degradation, and their persistence could have deleterious impacts on the sediment ecosystem

    Detection of methylated septin 9 in tissue and plasma of colorectal patients with neoplasia and the relationship to the amount of circulating cell-free DNA

    Get PDF
    BACKGROUND: Determination of methylated Septin 9 (mSEPT9) in plasma has been shown to be a sensitive and specific biomarker for colorectal cancer (CRC). However, the relationship between methylated DNA in plasma and colon tissue of the same subjects has not been reported. METHODS: Plasma and matching biopsy samples were collected from 24 patients with no evidence of disease (NED), 26 patients with adenoma and 34 patients with CRC. Following bisulfite conversion of DNA a commercial RT-PCR assay was used to determine the total amount of DNA in each sample and the fraction of mSEPT9 DNA. The Septin-9 protein was assessed using immunohistochemistry. RESULTS: The percent of methylated reference (PMR) values for SEPT9 above a PMR threshold of 1% were detected in 4.2% (1/24) of NED, 100% (26/26) of adenoma and 97.1% (33/34) of CRC tissues. PMR differences between NED vs. adenoma and NED vs. CRC comparisons were significant (p<0.001). In matching plasma samples using a PMR cut-off level of 0.01%, SEPT9 methylation was 8.3% (2/24) of NED, 30.8% (8/26) of adenoma and 88.2% (30/34) of CRC. Significant PMR differences were observed between NED vs. CRC (p<0.01) and adenoma vs. CRC (p<0.01). Significant differences (p<0.01) were found in the amount of cfDNA (circulating cell-free DNA) between NED and CRC, and a modest correlation was observed between mSEPT9 concentration and cfDNA of cancer (R2 = 0.48). The level of Septin-9 protein in tissues was inversely correlated to mSEPT9 levels with abundant expression in normals, and diminished expression in adenomas and tumors. CONCLUSIONS: Methylated SEPT9 was detected in all tissue samples. In plasma samples, elevated mSEPT9 values were detected in CRC, but not in adenomas. Tissue levels of mSEPT9 alone are not sufficient to predict mSEPT9 levels in plasma. Additional parameters including the amount of cfDNA in plasma appear to also play a role

    Transcriptomic Analyses Reveal Novel Genes with Sexually Dimorphic Expression in the Zebrafish Gonad and Brain

    Get PDF
    Background Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. Methodology/Principal Findings We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs), 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and ‘rest-of-body’ from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel) that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4) has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. Conclusions/Significance We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar roles in gonadogenesis in zebrafish and other vertebrates, our array may even provide information on genetic disorders affecting gonadal phenotypes and fertility in mammals

    The variable influence of dispersant on degradation of oil hydrocarbons in subarctic deep-sea sediments at low temperatures (0-5 °C)

    Get PDF
    The microbial degradation of petroleum hydrocarbons at low temperatures was investigated in subarctic deep-sea sediments in th e Faroe Shetland Channel (FSC). The effect of the marine oil dispersant, Superdispersant 25 on hydrocarbon degradation was also examined. Sediments collected at 500 and 1000 m depth were spiked with a model oil containing 20 hydrocarbons and incubated at ambient temperature (5 and 0 °C, respectively) with and without marine dispersant. Treatment of sediments with hydrocarbons resulted in the enrichment of Gammaproteobacteria, and specifically the genera Pseudoalteromonas, Pseudomonas, Halomonas, and Cobetia. Hydrocarbon degradation was faster at 5 °C (500 m) with 65-89% of each component degraded after 50 days compared to 0-47% degradation at 0 °C (1000 m), where the aromatic hydrocarbons fluoranthene, anthracene, and Dibenzothiophene showed no degradation. Dispersant significantly increased the rate of degradation at 1000 m, but had no effect at 500 m. There was no statistically significant effect of Superdispersant 25 on the bacterial community structure at either station. These results show that the indigenous bacterial community in the FSC has the capacity to mitigate some of the effects of a potential oil spill, however, the effect of dispersant is ambiguous and further research is needed to understand the implications of its use

    Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women

    Get PDF
    Background: Most BRCA1\textit{BRCA1} or BRCA2\textit{BRCA2} mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1\textit{BRCA1} and BRCA2\textit{BRCA2} are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295 female BRCA1/2\textit{BRCA1/2} mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1\textit{BRCA1} (SH1) or BRCA2\textit{BRCA2} (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2. Results: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; pp = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (pp = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (pp = 0.231), but was on average 4.5 years younger in TH than in SH2 (pp < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive (pp = 0.010) or progesterone receptor (PR) positive (pp = 0.013) than in SH1, but less likely to be ER positive (pp < 0.001) or PR positive (pp = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for BRCA1\textit{BRCA1} or BRCA2\textit{BRCA2} in either BC or OC. Conclusions: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2.ACA and the CIMBA data management are funded by Cancer Research UK (C12292/A20861 and C12292/A11174). TRR was supported by R01-CA083855, R01-CA102776, and P50-CA083638. KLN, TMF, and SMD are supported by the Basser Research Center at the University of Pennsylvania. BP is supported by R01-CA112520. Cancer Research UK provided financial support for this work. ACA is a Senior Cancer Research UK Cancer Research Fellow. DFE is Cancer Research UK Principal Research Fellow. Tumor analysis was funded by STOP CANCER (to SJR). Study-specific acknowledgements are as provided in the manuscript

    Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution

    Get PDF
    BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2) of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2) of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2). Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2) levels. The PO(2) of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2). Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO(2) gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2). Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. CONCLUSIONS/SIGNIFICANCE: Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour
    corecore