1,163 research outputs found

    Money and interest rates

    Get PDF
    This study describes and reconciles two common, seemingly contradictory views about a key monetary policy relationship: that between money and interest rates. Data since 1960 for about 40 countries support the Fisher equation view, that these variables are positively related. But studies taking expectations into account support the liquidity effect view, that they are negatively related. A simple model incorporates both views and demonstrates that which view applies at any time depends on when the change in money occurs and how long the public expects it to last. A surprise money change that is not expected to change future money growth moves interest rates in the opposite direction; one that is expected to change future money growth moves interest rates in the same direction. The study also demonstrates that stating monetary policy as a rule for interest rates rather than money does not change the relationship between these variables.Money ; Interest rates ; Monetary policy

    Solute effects on edge dislocation pinning in complex alpha-Fe alloys

    Get PDF
    Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Constituyentes. Departamento de Materiales; ArgentinaFil: MartĂ­nez, E.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Monnet, G.. EDF–R&D; FranciaFil: Malerba, L.. SCK‱CEN. Structural Materials Expert Group. Nuclear Materials Institute; BĂ©lgic

    Costly banknote issuance and interest rates under the national banking system

    Get PDF
    The behavior of interest rates under the U.S. National Banking System is puzzling because of the apparent presence of persistent and large unexploited arbitrage opportunities for note issuing banks. Previous attempts to explain interest rate behavior have relied on the cost or the inelasticity of note issue. These attempts are not entirely satisfactory. Here we propose a new rationale to solve the puzzle. Inelastic note issuance arises endogenously because the marginal cost of issuing notes is an increasing function of circulation. We build a spatial separation model where some fraction of agents must move each period. Banknotes can be carried between locations; deposits cannot. Taking the model to the data on national banks, we find it matches the movements in long-term interest rates well. It also predicts movements in deposit rates during panics. However, the model displays more inelasticity of notes issuance than is in the data.Bank notes ; Interest rates ; National banks (United States)

    SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Get PDF
    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/\mu m. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.Comment: 5 figures, accepted in Nucl. Instrum. Methods

    VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO

    Full text link
    We present high spatial resolution near-infrared spectra and images of the nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K- and 0.11" in H-band, four times higher than previous studies. The observed gas motions suggest a kinematically hot disk which is orbiting a central object and is oriented nearly perpendicular to the nuclear jet. We model the central rotation and velocity dispersion curves of the [FeII] gas orbiting in the combined potential of the stellar mass and the (dominant) black hole. Our physically most plausible model, a dynamically hot and geometrically thin gas disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the physical state of the gas is not well understood, we also consider two limiting cases: first a cold disk model, which completely neglects the velocity dispersion; it yields an M_bh estimate that is almost two times lower. The other extreme case is to model a spherical gas distribution in hydrostatic equilibrium through Jeans equation. Compared to the hot disk model the best-fit black hole mass increases by a factor of 1.5. This wide mass range spanned by the limiting cases shows how important the gas physics is even for high resolution data. Our overall best-fitting black hole mass is a factor of 2-4 lower than previous measurements. With our revised M_bh estimate, Cen A's offset from the M_bh-sigma relation is significantly reduced; it falls above this relation by a factor of ~2, which is close to the intrinsic scatter of this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee report; accepted for publication in The Astrophysical Journa

    Scalable N-body code for the modelling of early-type galaxies

    Full text link
    Early-type galaxies exhibit a wealth of photometric and dynamical structures. These signatures are fossil records of their formation and evolution processes. In order to examine these structures in detail, we build models aimed at reproducing the observed photometry and kinematics. The developed method is a generalization of the one introduced by Syer and Tremaine (1996), consisting in an N-body representation, in which the weights of the particles are changing with time. Our code is adapted for integral-field spectroscopic data, and is able to reproduce the photometric as well as stellar kinematic data of observed galaxies. We apply this technique on SAURON data of early-type galaxies, and present preliminary results on NGC 3377.Comment: 6 pages, 2 figures. Original version printed in the Proceedings of "Science perspective for 3D spectroscopy", 2005, Eds Kissler-Patig, Walsh, Roth, ES0, Springe

    NGC 7331: the Galaxy with the Multicomponent Central Region

    Get PDF
    We present the results of the spectral investigation of the regular Sb galaxy NGC 7331 with the Multi-Pupil Field Spectrograph of the 6m telescope. The absorption-line indices H-beta, Mgb, and are mapped to analyse the properties of the stellar populations in the circumnuclear region of the galaxy. The central part of the disk inside ~3" (200 pc) -- or a separate circumnuclear stellar-gaseous disk as it is distinguished by decoupled fast rotation of the ionized gas -- is very metal-rich, rather young, ~ 2 billion years old, and its solar magnesium-to-iron ratio evidences for a very long duration of the last episode of star formation there. However the gas excitation mechanism now in this disk is shock-like. The star-like nucleus had probably experienced a secondary star formation burst too: its age is 5 billion years, much younger than the age of the circumnuclear bulge. But [Mg/Fe]=+0.3 and only solar global metallicity imply that the nuclear star formation burst has been much shorter than that in the circumnuclear disk. The surrounding bulge is rather old, 9--14 billion years old, and moderately metal-poor. The rotation of the stars and gas within the circumnuclear disk is axisymmetric though its rotation plane may be slightly inclined to the global plane of the galaxy. Outside the circumnuclear disk the gas may experience non-circular motions, and we argue that the low-contrast extended bulge of NGC 7331 is triaxial.Comment: LATEX, 27 pages, + 15 Postscript figures. Accepted to Astronomical Journal, July issu

    The M 31 double nucleus probed with OASIS and HST. A natural m=1 mode?

    Get PDF
    We present observations with the adaptive optics assisted integral field spectrograph OASIS of the M 31 double nucleus at a spatial resolution better than 0.5 arcsec FWHM. These data are used to derive the two-dimensional stellar kinematics within the central 2 arcsec. Archival WFPC2/HST images are revisited to perform a photometric decomposition of the nuclear region. We also present STIS/HST kinematics obtained from the archive. The luminosity distribution of the central region is well separated into the respective contributions of the bulge, the nucleus including P1 and P2, and the so-called UV peak. We then show that the axis joining P1 and P2, the two local surface brightness maxima, does not coincide with the kinematic major-axis, which is also the major-axis of the nuclear isophotes (excluding P1). We also confirm that the velocity dispersion peak is offset by ~ 0.2 arcsec from the UV peak, assumed to mark the location of the supermassive black hole. The newly reduced STIS/HST velocity and dispersion profiles are then compared to OASIS and other published kinematics. We find significant offsets with previously published data. Simple parametric models are then built to successfully reconcile all the available kinematics. We finally interpret the observations using new N-body simulations. The nearly keplerian nuclear disk of M31 is subject to a natural m=1 mode, with a very slow pattern speed (3 km/s/pc for M_BH = 7 10^7~\Msun), that can be maintained during more than a thousand dynamical times. The resulting morphology and kinematics of the mode can reproduce the M~31 nuclear-disk photometry and mean stellar velocity, including the observed asymmetries. It requires a central mass concentration and a cold disk system representing between 20 and 40% of its mass. Abridged..Comment: 21 pages. accepted for publication in A&

    3D atom probe tomography of swift heavy ion irradiated multilayers

    Get PDF
    International audienceNanometer scale layered systems are well suited to investigate atomic transport processes induced by high-energy electronic excitations in materials, through the characterization of the interface transformation. In this study, we used the atom probe technique to determine the distribution of the different elements in an (amorphous-Fe2_2Tb 5 nm/hcp-Co 3 nm)20_{20} multilayer before and after irradiation with Pb ions in the electronic stopping power regime. Atom probe tomography is based on reconstruction of a small volume of a sharp tip evaporated by field effect. It has unique capabilities to characterize internal interfaces and layer chemistry with sub-nanometer scale resolution in three dimensions. Depth composition profiles and 3D element mapping have been determined, evidencing for asymetric interfaces in the as-deposited sample, and very efficient Fe-Co intermixing after irradiation at the fluence 7×10127\times10^{12} ion cm−2^{-2}. Estimation of effective atomic diffusion coefficients after irradiation suggests that mixing results from interdiffusion in a molten track across the interface in agreement with the thermal spike model
    • 

    corecore